ISO TC184/SC4/WG11 NO66

Date: Decemberl8, 1998

Supersedes WG11 N052

PRODUCT DATA REPRESENTATION AND EXCHANGE

Part: 1?

Pur%ose of this document as it relates to the target document is:
X

rimary content
Issue discussion
Alternate proposal
Partial content

ABSTRACT:

Draft of EXPRESS-X language reference manual.

KEYWORDS

EXPRESS
EXPRESS-X

Mapping language

Title: EXPRESS-X Language Reference Manua

Current status:
Version

Working Draft

Document status/dategdd/mm/yy)
Part Documents Other SC4 Documents

X Working draft Working
Project draft Released
Released draft Confirmed
Technically complete Released

Editorially complete
ISO Committee Draft

Project leader: Martin Hardwick Editor: Peter Denno
Address: STEP Tools, Inc. Address: NIST
1223 Peoples Avenue Quince Orchard Road,
Troy, NY 12180 Gaithersburg, MD 20899
USA USA
Telephone: +1 (518) 276-2848 Telephone: +1 (301) 975-3595
Fax: +1 (518) 276-8471 Fax: +1 (301) 975-4694
E-mail: hardwick@steptools.com E-mail: peter.denno@nist.gov
Comments to Reader:
This draft remains technically and editorially incomplete. It is being distributed to elicit feedback
from interested parties and to allow early prototype implementation to begin. Potential implementers

should be aware of the early and volatile nature of the language.

ISO/NWI 10303- ©1S0

©1SO ISO/NWI 10303-

Contents

T Yo 0 o PP 1

2. NOMMALIVE FEIEIENCESvveeiiiii i e e e e e e e e e e eaaes 2.

G J B T {0110 PP 2
3.1Terms defined iN ISO 10303-1ciiiiiie e e e e e e e e e e e e e e eaaeeeeees 2
3.2Terms defined in ISO 10303-11coooeeiiiiiieiieeeeee e e e e e e e e e e e eeaees 2
3.30ther defiNItIONSccooviiii e 3.

4. ConfOrmancCe rEQUINEIMENTSevuuueueuiiiisiaseeeeeeeeeeeeeeeeeeaerasass i raaaaeeaaaeeaeeeeeeessnnsnnnnaaaeaens 4
4.1Formal specifications written in EXPRESS-X ...oouuiiiiiiiiiiie st 4

4.1.1 LeXiCal [aNQUAGE......uueeiiieiiiiieeeee ettt 4
4.2Implementations of EXPRESS-Xocoovviiiiiiiiiiiiie e s e e e e e e e e e e e eaeeenennes 5

4.2.1 EXPRESS-X [aNQUAQJE PAISEl......cciiiiiiiiiiieeeiiiiiie e e e e eetiie e e e e e eeta e e e e eesanneeeaeennes 5

4.2.2 EXPRESS-X MapPiNg ENGINEuuiiiiiiiiiiiiiiieaaeaaeaaaaaa e saiiiseseeeeeeeeeeeeeeeaeeeas 5
4.3CONTOIMMANCE ClIASSES ...ceeveviiiiiiiiiiie i e e e e ettt e e e e e e e e e e e et e e e ea s aa i a e e e e e eeeaaeeeeees 7

5. Fundamental PriNCIPIESuuuuuuiiiiiiii e Lo

6. Language SPEeCIfICAtION SYNTAXccoiiiiiiiiiiiiiiiiiiie e s e e e e e e e e e e e e e e e eeeaea s e e e e e eeeaeeeeeeeeeennnnes 9

7. Basic language €IEMENLSoooiiiiiiiiiiiii e 11
7. LRESEIVEA WOITS ...eeeieieiiiiiiieee e e e e e e e e ettt eee ettt a e e s e e e e eeeeeeeeeeeeeeeessssannaaaaeaaeaaaeeaeeeenennnnnes 11

400 St R 1= ATV o £ 11

8. DAL LYPES ...ttt e 12..
8.1CompleX entity data tYPeccee et e e e e e e 12
B.2VIEBW dAtA TYP8 .euuiiiiiiiiiiie e 13.........
8.3EXIENT UALA LYPE ...ttt e e e e e e e 13.........

S B I L= Tod =T = 1o] 1 14...
9.1Schema_VIieW deCIAratiOnueeuiiiiiieee e 14
9.25chema_map dECIATALIONuuiiiiiiiiiiiiiiii e e e e e e e e e e e e e e e s 15
9.3Common clauses of the VIEW and MAP declarationscccccceeviiiieeeeeiiieeveeeiiiininns 17

9.3.1 The FROM CIAUSEcoiiiiiieeieeeeeee et a e 17
9.3.2 The WHERE CIAUSEuuiuiiiiiiie ettt 17
9.3.3 Identification of view and target inStances............ccccvvvvvviiiiiiiiciiiie e 18
0. 4AVIEW AECIAIALION ...uvveiiiiiiie et e e e e e e e aeeas [0 2
9.4.1 VIeW AttriDULEScccoe et e e e e e e e e e e e e e e eeeennenne 21
9.4.2 VIEeW PAITItIONS ...ooeeeiiiiiiiiiiis i e e e e e e et s e e e e e e e e e e e e e e e e e ran e as 22
9.4.3 SpecCifying SUDLYPE VIBWSouiiiiiiiiiiiieee et e e eeeeaaenees 23
O.5M@AP AECIAIALIONcevviiiiiieee et 23........
9.5.1 Header of the MAP declarationcccceeieiiiiiieeeiiiieeeeee e 24
9.5.2 The SELECT CIAUSEoo oo 25
9.5.3 Partitions within @ MAP decClarationcccceeiiiiiiieeeeeieiieeeeenen e 25
9.5.4 INNEIEANCE ...uuiii ittt et e ettt e e e e e e e e e e e e e e e e aaaaaaraa 26

ISO/NWI 10303- ©1S0

10.

11.

12.

13.

14.
15.

9.6Create deClarationcccoeeeeeeee e e e e e 27.........
9.7CoNStaNt AeCIAratioN...........ooiiiiiieiii s AT 2
9.8FUNCLION ECIAIALION ..t e e e e e e e e e e e e e e eees 27
e foTod=To [= [=Tox F= 1= 4[] o 27
O.10RUIE dECIAratiONcoeiiiiiii e 21.........
9.11Type MAP AECIAIALION......cieii ittt e e e e e e e e e e e e eaeeeeeennnnes 27
Scope and VISIDIlILYuuiieeiiiii e 28.....
L1O.1SCOPE FUIBS ..ot e et e e e e e e a e e e e e eesnan 29........
10.2VISIDIILY TUIES et e e e e e e e eeaa 29......
10.3EXPICIT ITEM TUIES ..t e e e e e e e e e e O 2
10.3.1 SCNEMA_VIBW ..ottt e e e e e e e e e e e eeeeaeeeees 29
TR T2V = SO 30
10.3.3 View partition 12D ... 30
10.3.4 VIBW EXPIESSIONuuiiiiieeeeeeeee ettt e e e e e e e e e e e et eeeeabatb b e e e e e e e e e eaeaaaeeees 30
INterface SPECITICALIONooiiiiii et e e e emmns 30.....
11.1Reference interface SPeCIfiCAtiONiiiiiiiii e 31
2 [g o] [o] | AT 1 (=T = o =L PR 2 3
11.3SCHEMA_MAP INTEITACESccoeiiiieeeeeeiiceis ettt s e s e e e e e e e e e e e e eeeeenneannnns 32
11.3.1 Source SChema INTEITACEcciiiiiiiiiiiii e 32
11.3.2 Target Schema INtErface ... 32
11.3.3 MAP INLEITACE ...oiiiieeeeei e e e e e e e e eeeeas 33
11.3.4 EXternal fUNCLIONScooiiiiiiiiiiit ettt 33
EXPIESSIONS ...ttt ettt ettt e e e e e e e e e e e e e e 33...
D2 1 o] o | 1 T [o PP 33........
12.2Partial explicit DINAINGooooiiii e 36
12.3INNNE VIBWS ...ttt s e e e e e e e e e e e e e e e et eeeaetnnn e e e e e eeeeeeean 31.......
12.40PEratioNS ON EXIENTSccciiiiiiiiiiiiii e e e e e e e e e e e e e et e e e e e e e e e aeeaeeeeeeeessrnnnn s 37
12.5View expression eValUationcoiiiiiiiiiiiiiic e 37
12.6FOR EXPIESSIONoiiiiiiiiiiiiitt ettt e e e e e e e e e e e e e et e e e e bbb bbbt e et e et e e e e e e e e e e e e e e e e e e aaaannan 37
2 @] aTo [T0] g Fo T =)q o] £=1S1] (o o [41
12 . 8CASE EXPIESSION ovviuiiiiiiiiiiiie e e ettt e e e et e e e e e e e e e e et e e e e e e et e e e e e et e e e e ear s 41
Executable StatemMeNntSoooiiiiiiiiiie e 42..........
L13.1FOR ClAUSE ..eveeeeieiiiiieeee ettt e e e e e e e e e e e e e s e e n e eee s 42.........
Built-in fuNCtioNs and ProCEAUIESooiiiiiiiiiieeeie et 45
EXecution MOdel SEMANTICScuuuiiiiiiiiiiiiieiiii e e e e e e e e e e e e e e e e s e e e s annnnes 45
15.1Reference of source (and target) SChEemMASoooiiiiiiiiiiiiiiii e 46
15.2Inclusion of externally defined fUNCLIONSoooiiiiiiiiiiie e 46
15.3IMPOort Of MAPPINGS ... e e e e e e e e e e e 46
15.4TYPE MAPPING oeeeeiiieiiinnniiiaae e e e e e e e e e et eeeeeettaaaeaa e e e aaaeaaaaaeteeeeessessannn s aeaaeaeaaaeaeeeeesnnes 46
15.5The FROM ClAUSEcciiiiiieeeeeeiieee st s s e e e e e e e e e e e e e e e e e eeeesannnnnnaneeeeas 47
15.6ThE WHERE CIAUSEeeeiiiiiiiiiiiie ettt e e e e e ene e 48

©1SO ISO/NWI 10303-

15.7The IDENTIFIED_BY CIAUSEcccoieieeee ettt eees 49
15.8TNE SELECT CIAUSEutiiiiiiiiiiiiiieee ettt a e e e e e e e e e e e e e s s b e e ee e 50
LI5.9PAITIHIONS .. .oiiiiiieiiiittt ettt e e e e e e e e e e e e e e e eeeesbtebaa e a e e e e e e e e eaan 51.....
15.10NEtWOrK MEAPPING ooeeeeeeeiiiiiiieiiiei ittt et et e e e e e e e e e e e e s s s e b b bbb e s e e e e e e eeeeeaeaaeeeeas 51
15.11The FOR SEAEMENT ...coiiiiiiiiiiiiee ettt e e e e e e e e e e e e e e e e s e s e s annnnes 51
15.12EXPHCIE DINAING .oviiiiiie e e e e 52

(normative)

EXPRESS-X [aNQUAGE SYNTAXiiiiiiieiiiiiiiiiiiiiiiiiteee s e e e e e e e e et e eeeeeetebaasaa s s s e e e e e aeaeaeaeeeeeesnsnnes 53

(informative)

(1]] [ToTo | =Y o] 1) 2RO 60

ISO/NWI 10303-

vi

©1S0

©1SO ISO/NWI 10303-

Foreword

The International Organization for Standardization (ISO) is a worldwide federation of national stand-
ards bodies (ISO member bodies). The work of preparing International Standards is normally carried
out through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International organi-
zations, governmental and non-governmental, in liaison with 1SO, also take part in the work. 1ISO col-
laborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.

Draft International Standards adopted by technical committees are circulated to the member bodies for
voting. Publication as an International Standard requires approval by at least 75% of the member bodies
casting a vote.

International Standard ISO 10303-2?was prepared by Technical Committee ISO/TC 1&dustrial
automation systems and integrati®@ubcommittee SC4ndustrial data

ISO 10303 consists of the following parts under the general title Industrial automation systems and
integration - Product data representation and exchange:

— Part 1, Overview and fundamental principles;

— Part 11, Description methods: The EXPRESS language reference manual;

— Part 12, Description methods: The EXPRESS-I language reference manual,

— Part 21, Implementation methods: Clear text encoding of the exchange structure;

— Part 22, Implementation methods: Standard data access interface specification;

— Part 23, Implementation methods: C++ language binding to the standard data access interface;
— Part 24, Implementation methods: C language binding to the standard data access interface;

— Part 26, Implementation methods: Interface definition language binding to the standard data
access;

— Part 31, Conformance testing methodology and framework: General concepts;

— Part 32, Conformance testing methodology and framework: Requirements on testing laboratories
and clients;

— Part 33, Conformance testing methodology and framework: Structure and use of abstract test
suites;

— Part 34, Conformance testing methodology and framework: Abstract test methods;

Vii

ISO/NWI 10303- ©1S0

— Part 35, Conformance testing methodology and framework: Abstract test methods for SDAI imple-
mentations;

— Part 41, Integrated generic resource: Fundamentals of product description and support;
— Part 42, Integrated generic resources: Geometric and topological representation;

— Part 43, Integrated generic resources: Representation structures;

— Part 44, Integrated generic resources: Product structure configuration;

— Part 45, Integrated generic resources: Materials;

— Part 46, Integrated generic resources: Visual presentation;

— Part 47, Integrated generic resources: Shape variation tolerances;

— Part 49, Integrated generic resources: Process structure and properties;

— Part 101, Integrated application resources: Draughting;

— Part 104, Integrated application resources: Finite element analysis;

— Part 105, Integrated application resources: Kinematics;

— Part 106, Integrated application resources: Building construction core model,

— Part 201, Application protocol: Explicit draughting;

— Part 202, Application protocol: Associative draughting;

— Part 203, Application protocol: Configuration controlled design;

— Part 204, Application protocol: Mechanical design using boundary representation;

— Part 205, Application protocol: Mechanical design using surface representation;

— Part 207, Application protocol: Sheet metal die planning and design;

— Part 208, Application protocol: Life cycle management - Change process;

— Part 209, Application protocol: Composite and metallic structural analysis and related design;
— Part 210, Application protocol: Electronic assembly, interconnect, and packaging design;
— Part 212, Application protocol: Electrotechnical design and installation

— Part 213, Application protocol: Numerical control process plans for machined parts;

viii

©1SO ISO/NWI 10303-

Part 214, Application protocol: Core data for automotive design;
Part 215, Application protocol: Ship arrangement;

Part 216, Application protocol: Ship moulded forms;

Part 217, Application protocol: Ship piping;

Part 218, Application protocol: Ship structures;

Part 220, Application protocol: Process planning, manufacture, and assembly of layered electronic
products;

Part 221, Application protocol: Functional data and their schematic representation for process
plant;

Part 222, Application protocol: Exchange of product data for composite structures;

Part 223, Application protocol: Exchange of design and manufacturing product information for
casting parts;

Part 224, Application protocol: Mechanical product definition for process plans using machining
features;

Part 225, Application protocol: Building elements using explicit shape representation;

Part 226, Application protocol: Ship mechanical systems;

Part 227, Application protocol: Plant spatial configuration;

Part 228, Application protocol: Building services: Heating, ventilation, and air conditioning;

Part 229, Application protocol: Exchange of design and manufacturing product information for
forged parts;

Part 230, Application protocol: Building structural frame: Steelwork;

Part 231, Application protocol: Process engineering data: Process design and process specification
of major equipment;

Part 232, Application protocol: Technical data packaging core information and exchange;
Part 301, Abstract test suite: Explicit draughting;
Part 302, Abstract test suite: Associative draughting;

Part 303, Abstract test suite: Configuration controlled design;

ISO/NWI 10303- ©1S0

— Part 304, Abstract test suite: Mechanical design using boundary representation;

— Part 305, Abstract test suite: Mechanical design using surface representation;

— Part 307, Abstract test suite: Sheet metal die planning and design;

— Part 308, Abstract test suite: Life cycle management - Change process;

— Part 309, Abstract test suite: Composite and metallic structural analysis and related design;
— Part 310, Abstract test suite: Electronic assembly, interconnect, and packaging design;
— Part 312, Abstract test suite: Electrotechnical design and installation;

— Part 313, Abstract test suite: Numerical control process plans for machined parts;

— Part 314, Abstract test suite: Core data for automotive mechanical design;

— Part 315, Abstract test suite: Ship arrangement;

— Part 316, Abstract test suite: Ship moulded forms;

— Part 317, Abstract test suite: Ship piping;

— Part 318, Abstract test suite: Ship structures;

— Part 320, Abstract test suite: Process planning, manufacture, and assembly of layered electronic
products;

— Part 321, Abstract test suite: Functional data and their schematic representation for process plant;
— Part 322, Abstract test suite: Exchange of product data for composite structures;

— Part 323, Abstract test suite: Exchange of design and manufacturing product information for cast-
ing parts;

— Part 324, Abstract test suite: Mechanical product definition for process plans using machining fea-
tures;

— Part 325, Abstract test suite: Building elements using explicit shape representation;

— Part 326, Abstract test suite: Ship mechanical systems;

— Part 327, Abstract test suite: Plant spatial configuration;

— Part 328, Abstract test suite: Building services: Heating, ventilation, and air conditioning;

— Part 329, Abstract test suite: Exchange of design and manufacturing product information for

©1SO

forged parts;

major equipment;

Part 501, Application interpreted construct

Part 502, Application interpreted construct

Part 518, Application interpreted construct

The structure of this International Standard is d

the International Standard reflects its structure:

Part 503, Application interpreted construct:
Part 504, Application interpreted construct:
Part 505, Application interpreted construct:
Part 506, Application interpreted construct:
Part 507, Application interpreted construct:
Part 508, Application interpreted construct:
Part 509, Application interpreted construct:
Part 510, Application interpreted construct:
Part 511, Application interpreted construct:
Part 512, Application interpreted construct:
Part 513, Application interpreted construct:
Part 514, Application interpreted construct:
Part 515, Application interpreted construct:

Part 517, Application interpreted construct:

ISO/NWI 10303-

Part 330, Abstract test suite: Building structural frame: Steelwork;

Part 331, Abstract test suite: Process engineering data: Process design and process specification of

Part 332, Abstract test suite: Technical data packaging core information and exchange;

: Edge-based wireframe;

: Shell-based wireframe;

Geometrically bounded 2D wireframe;
Draughting annotation;

Drawing structure and administration;
Draughting elements;

Geometrically bounded surface;
Non-manifold surface;

Manifold surface;

Geometrically bounded wireframe;
Topologically bounded surface;

Faceted boundary representation;
Elementary boundary representation;
Advanced boundary representation;
Constructive solid geometry;

Mechanical design geometric presentation;
: Mechanical design shaded representation;

escribed in ISO 10303-1. The numbering of the parts of

— Parts 11 to 13 specify the description methods,

Xi

ISO/NWI 10303- ©1S0

Parts 21 to 26 specify the implementation methods,

— Parts 31 to 35 specify the conformance testing methodology and framework,
— Parts 41 to 49 specify the integrated generic resources,

— Parts 101 to 106 specify the integrated application resources,

— Parts 201 to 232 specify the application protocols,

— Parts 301 to 332 specify the abstract test suites,

Parts 501 to 518 specify the application interpreted constructs, and
Should further parts of ISO 10303 be published, they will follow the same numbering pattern.

Annexes A, B, C, D, and E forms an integral part of this part of ISO 10303. Annex B is for information
only.

Xii

©1SO ISO/NWI 10303-

Introduction

ISO 10303 is an International Standard for the computer-interpretable representation and exchange of
product data. The objective is to provide a neutral mechanism capable of describing product data
throughout the life cycle of a product, independent from any particular system. The nature of this
description makes it suitable not only for neutral file exchange, but also as a basis for implementing and
sharing product databases and archiving.

This International Standard is organized as a series of parts, each published separately. The parts of ISO
10303 fall into one of the following series: description methods, integrated resources, application inter-
preted constructs, application protocols, application modules, abstract test suites, implementation meth-
ods, and conformance testing. The series are described in ISO 10303-1. This part of ISO 10303 is a
member of the description methods series.

This part of ISO 10303 specifies the EXPRESS-X mapping language.

Xiii

ISO/NWI 10303- ©1S0

Xiv

©1SO ISO/NWI 10303-

INTERNATIONAL STANDARD © ISO ISO/NWI 10303-17?

Industrial automation systems and integration —

Product data representation and exchange —

Part 17?7?:

Description methods: The EXPRESS-X language reference
manual

1. Scope

This part of ISO 10303 defines a language by which relationships of data defined by models in the
EXPRESS language can be specified. The language is called EXPRESS-X.

EXPRESS-X is a structural data mapping language. It consists of language elements that allow an
unambiguous specification of the relationship between models.

The following are within the scope of this part of ISO 10303:
— Mapping data defined by one EXPRESS model to data defined by another EXPRESS model.

— Mapping data defined by one version of an EXPRESS model to data defined by another version of
EXPRESS model, where the two schemas have different names.

— Specification of requirements for data translators for data sharing and data exchange applications.
— Formal specification of alternate views of data defined by an EXPRESS model.
— Provisions for an alternate notation for application protocol mapping tables.
— Provisions for bi-directional mappings where mathematically possible.
— Concatenation of mappings sharing a common model.
— Specification of constraints evaluated against data produced by mapping.
The following are outside the scope of this part of ISO 10303:
— Mapping of data defined using means other than EXPRESS.
— Mapping of data defined using the second edition of EXPRESS.

— ldentification of the version of an EXPRESS schema.

ISO/NWI 10303- ©1S0

— Graphical representation of constructs in the EXPRESS-X language.

2. Normative references

The following standards contain provisions that, through reference in this text, constitute provisions of
this part of ISO 10303. At the time of publication, the editions indicated were valid. All standards are
subject to revision, and parties to agreements based on this part of ISO 10303 are encouraged to inves-
tigate the possibility of applying the most recent editions of the standards indicated below. Members of
IEC and ISO maintain registers of currently valid International Standards.

ISO 10303-1:1994Industrial automation systems and integration — Product data representation and
exchange — Part 1: Overview and fundamental principles

ISO 10303-11:1994ndustrial automation systems and integration — Product data representation and
exchange — Part 11: Description methods: The EXPRESS language reference manual

3. Definitions

3.1 Terms defined in ISO 10303-1
This part of ISO 10303 makes use of the following terms defined in ISO 10303-1.

— data;

— data specification language;
— exchange structure;

— implementation method;

— information;

— information model.

3.2 Terms defined in ISO 10303-11
This part of ISO 10303 makes use of the following terms defined in ISO 10303-11.

— complex entity data type;

©1SO

ISO/NWI 10303-

— complex entity (data type) instance;

— constant;

— entity;

— entity data type;

— entity (data type) instance;

— instance;

— partial complex entity data type;

— partial complex entity value;

— population;

— simple entity (data type) instance;

— subtype/supertype graph;

— token;

— value.

3.3

Other definitions

For the purposes of this part of ISO 10303, the following definitions apply:

3.3.1

3.3.2

3.3.3

3.34

3.35

3.3.6

binding an ordered tuple of values taken from source data entity extents or view extents accord-
ing to the requirements of a view or map declaration.

binding extent the set of bindings corresponding to source data entity extents and view extents.

evaluation(of a view or map): the application of a binding to a view or map. Evaluation of a
view may produce a view extent. Evaluation of a map may produce entity instances in the target
data set.

inverse evaluation(of a view / map): the updating of source data values through the update of
(view instance / target entity instance) attribute values. Inverse evaluation shall maintain the
relationship between (view instance / entity instance) attribute values and source data as defined
in the (VIEW / MAP) declarations.

map a declaration that defines a relationship between data of one (or more) source entity types
and data of one (or more) target entity types.

view an alternative organization of the information in an EXPRESS model.

ISO/NWI 10303- ©1S0

3.3.7 view extentan aggregation data type having as its domain a collection of values of a given view
data type. An element of the collection may be identified by a binding.

3.3.8 view data type a representation of a view. A view data type establishes a domain of values
defined by common attributes.

3.3.9 view instancea named unit of data which represents an alternative organization of source data.
It is a member of the domain established by a view entity type.

4. Conformance requirements

4.1 Formal specifications written in EXPRESS-X

4.1.1 Lexical language

A formal specification written in EXPRESS-X shall be consistent with a given level as specified below.
A formal specification is consistent with a given level when all checks identified for that level as well as
all lower levels are verified for the specification.

Levels of checking

Level 1: Reference checking. This level consists of checking the formal specification to ensure that
it is syntactically and referentially valid. A formal specification is syntactically valid if it matches
the syntax generated by expanding the primary syntax syietg§x) given in Annex A. A formal
specification is referentially valid if all references to EXPRESS-X items are consistent with the
scope and visibility rules defined in clauses 10 and 11.

Level 2: Type checking. This level consists of checking the formal specification to ensure that it is
consistent with the following:

— expressions shall comply with the rules specified in clause 12 and in 1ISO 10303-11:1994
clause 12;

— assignments shall comply with the rules specified in ISO 10303-11:1994 clause 13.3.

Level 3: Value checking. This level consists of checking the formal specification to ensure that it is
consistent with statements of the form, ‘A shall be greater than B’, as specified in clause 7 to 14.
This is limited to those places where both A and B can be evaluated from literals and/or constants.

Level 4. Complete checking. This level consists of checking the formal specification to ensure that
it is consistent with all stated requirements as specified in this part of ISO 10303.

©1SO ISO/NWI 10303-

4.2 Implementations of EXPRESS-X

4.2.1 EXPRESS-X language parser

An implementation of an EXPRESS-X language parser shall be able to parse any formal specification
written in EXPRESS-X, consistent with the conformance class associated with that implementation. An
EXPRESS-X language parser shall be said to conform to a particular checking level (as defined
in 4.1.1) if it can apply all checks required by that level (and any level below it) to a formal specification
written in EXPRESS-X.

The implementor of an EXPRESS-X language parser shall state any constraints that the implementa-
tion imposes on the number and length of identifiers, on the range of processed numbers, and on the
maximum precision of real numbers. Such constraints shall be documented for the purpose of conform-
ance testing.

4.2.2 EXPRESS-X mapping engine

An implementation of an EXPRESS-X mapping engine shall be able to evaluate and/or execute any for-
mal specification written in EXPRESS-X, consistent with the conformance class associated with that
implementation. The execution and/or evaluation of a mapping is relative to one or more source data
sets; the specification of how these data sets are made available to the mapping engine is outside the
scope of this part of ISO 10303.

The implementor of an EXPRESS-X mapping engine shall state any constraints that the implementa-

tion imposes on the number and length of identifiers, on the range of processed numbers, and on the
maximum precision of real numbers. Such constraints shall be documented for the purpose of conform-

ance testing.

An implementation of an EXPRESS-X mapping engine may take many forms; the following sub-
clauses identify representatively, not exhaustively, the support a mapping engine may provide.

4.2.2.1 Support of VIEW declarations

An implementation shall be said to support VIEW declarations if it meets all of the following criteria:
— The mapping engine accepts a single data set described by an EXPRESS information model.

— The source data instances may be accessed through the evaluation of VIEW declarations.

4.2.2.2 Support of MAP declarations

An implementation shall be said to support MAP declarations if it meets all of the following criteria:

— The mapping engine accepts at least a single data set described by an EXPRESS information
model.

ISO/NWI 10303- ©1S0

— The mapping engine generates a single data set for a given EXPRESS information model.

— The source data instances may be accessed through the evaluation of MAP declarations.

4.2.2.3 Support of the propagation of updates

An implementation shall be said to support the propagation of updates if updates on viewed / mapped
data are reflected in source data by the inverse evaluation of the appropriate declarations whenever pos-
sible.

Propagation of updates is not possible in situations where any of the following hold:

— The view / target entity is derived from / mapped to two or more source entities by applying a join
operation. (For example, the view / target enpigrson_in_dept corresponds to the source
entities person and department where the join conditiorperson.id = depart-
ment.person_id evaluates to true.)

— Duplicates (with respect to value equivalence of attributes) which exist in the source data are elim-
inated in the view / target data.

— View / target attributes are derived from / mapped to source schema elements by applying mathe-
matical expressions that are not mathematically invertible.

— The view / target schema defines additional subtypes which do not exist in the source schema(s).

— Subtypes which are defined in the souce schema(s) are projected (i.e., not contained) in the view /
target schema.

— The sort order of source attributes of type AGGREGATE is eliminated in the view / target schema.

— Duplicates (with respect to value equivalence) of elements of source attributes of type AGGRE-
GATE are eliminated in the view / target schema.

— A single source entity corresponds to a network of interconnected view / target entities (by rela-
tionships or equivalence of attribute valt)es

4.2.2.4 Push mapping

An implementation shall be said to be a push mapping implementation if it meets all of the following
criteria:

— The mapping engine accepts one or more source data sets, and produces one or more output data
sets.

— The output data sets are derived from the input data sets by the execution and evaluation of poten-
tially all of the VIEW and MAP declarations.

1. The latter kind of relationship is comparable to primary key - foreign key relationships in the relational
data model.

©1SO ISO/NWI 10303-

— Every instance in the source data sets is mapped as specified in the mapping schema into the out-
put data sets.

4.2.2.5 Pull mapping

An implementation shall be said to be a pull mapping implementation if it meets all of the following
criteria:

— The mapping engine accepts one or more source data sets.

— Specified target data instances are derived on demand from the input data sets by the execution and
evaluation of the appropriate VIEW or MAP declarations.

NOTE — This part of ISO 10303 does not define how appropriate VIEW / MAP declarations are identi-
fied.

4.2.2.6 Support of constraint checking

An implementation shall be said to support constraint checking if it implements the concepts described
in clause 9.6 of ISO 10303-11:1994 against entity instances in target populations and against view
instances in the view extents.

NOTE — The evaluation of constraints has no effect on the mapping execution model.

4.3 Conformance classes

An implementation shall be said to conform to conformance class 1 if it processes all the declarations
that may appear in a SCHEMA_VIEW declaration.

An implementation shall be said to conform to conformance class 2 if it processes all the declarations
that may appear in a SCHEMA_MAP declaration that do not contain any external references to a
SCHEMA_VIEW declaration.

An implementation shall be said to conform to conformance class 3 if it processes any EXPRESS-X
declaration that conforms to this part of ISO 10303.

5. Fundamental principles

The reader of this document is assumed to be familiar with the following concepts, in addition to the
concepts described in clause 5 of ISO 10303-11:1994.

EXPRESS-X provides for the specification of:

ISO/NWI 10303- ©1S0

— alternative views of the data described by an information model described in EXPRESS;

— the transformation of data described by elements of one EXPRESS model into data described by
elements of another EXPRESS model.

A SCHEMA_VIEWeclaration may provide declarations enabling the specification of the former.

A SCHEMA_MAgeclaration may provide declarations enabling the specification of the former and lat-
ter.

VIEW andMAPdeclarations may defineEROMlause. Thd&=ROMlause, through its identification of
source extents, establishes a binding extent. The binding extent is a set of bindings (ordered tuples)
from the cartesian product of source extents. The elements of the tuples are ordered as they appear in
the parameter_list of the FROMlause. The values of elements of the binding (elements of a
source extent) may be entity instances references, view instance references or values of the primitive
EXPRESS types. The binding extent consists only of those tuples for which the application of the
WHERIExpression of the declaration (an extensional membership predicate) does noFrEi@HES

Bindings and binding extents are notional constructs. There are no means within the language to
directly obtain or manipulate bindings or binding extents.

The VIEW declaration may define view attribute declarations. The expression of these declarations are
evaluated relative to a given binding.

EXAMPLE 1 — The extents opart andpart_usage_approval below are the sets of
entity instances (#1,#2,#3) and (#4,#5#6) respectively. The binding extent of
valve_approvers is the set of tuples (<#1,#4>,<#2#6>). The paramepeend pua are

bound to #1 and #4 respectively to produce one view instance of the view extent and #2 and #6 to
produce another view instance of that extent.

ENTITY part;
part_number : STRING;
part_type : STRING;

END_ENTITY;

ENTITY part_usage_approval;
approver : STRING;
part_approved : STRING;

END_ENTITY

VIEW valve_approvers;
FROM (p:part, pua:part_usage_approver)
WHERE (p.part_number = pua.part_approved) AND
(p.type = ‘valve’);

SELECT
approver : STRING := pua.approver;
part : STRING := p.part_number;
END_VIEW,

©1SO ISO/NWI 10303-

#1 = PART(‘p_1','valve’);

#2 = PART(‘p_2’,'valve’);

#3 = PART('‘p_3',’steel door’);

#4 = PART_USAGE_APPROVAL(‘jones’,’p_1");
#5 = PART_USAGE_APPROVAL(‘'smith’,’p_3);
#6 = PART_USAGE_APPROVAL(‘watkins’,'p_2");

In view declarations that do not include HDENTIFIED _BY clause, bindings serves to identify ele-
ments of the extent defined by MHEEW declaration and source data set.

A schema map written in the EXPRESS-X language describes how elements of one EXPRESS model
(the source model) may be transformed into elements of another (the target model). A schema map is
composed principally of map and type map declarations. A schema map may reference definitions from
an EXPRESS-X schema view.

The specification of a map is based upon an extent of bindings. For each binding in the extent, the body
of the map is executed in order to create and populate one or more instances in the target model. A map
specification that meets certain criteria is said to be reversible; reversible maps allow a change to data
defined by the target model to be propagated back to the source model.

The specification of a type map defines how data described by EXPRESS defined types may be trans-
formed between the source and target model.

EXPRESS function and procedure specifications may form part of an EXPRESS-X specification in
order to support the definition of views, maps, or type maps.

The EXPRESS-X language does not describe an implementation environment. In particular,
EXPRESS-X does not specify:

how references to names are resolved;

how other schemas, schema views, or schema maps are known;

how input and output data sets are specified;

how mappings are executed for instances that do not conform to an EXPRESS schema.

6. Language specification syntax

The notation used to present the syntax of the EXPRESS-X language is defined in this clause.

The full syntax for the EXPRESS-X language is given in Annex A. Portions of those syntax rules are
reproduced in various clauses to illustrate the syntax of a particular statement. Those portions are not

ISO/NWI 10303- ©1S0

always complete. It will sometimes be necessary to consult Annex A for the missing rules. The syntax
portions within this part of ISO 10303 are presented in a box. Each rule within the syntax box has a
unique number toward the left margin for use in cross-references to other syntax rules.

The syntax of EXPRESS-X is defined in a derivative of Wirth Syntax Notation (WSN).

NOTE — See annex B for a reference.

The notational conventions and WSN defined in itself are given below.
syntax= { production } .
production= identifier '=' expression "." .
expression=term {'|'term } .
term= factor { factor } .
factor= identifier | literal | group | option | repetition .

identifier= character { character } .

nn nn

literal= """ character { character } " .
group= (' expression ‘)" .
option="TT" expression ' .
repetition="{' expression '}' .
— The equal sigi¥' indicates a production. The element on the left is defined to be the combination

of the elements on the right. Any spaces appearing between the elements of a production are mean-
ingless unless they appear within a literal. A production is terminated by a period

— The use of an identifier within a factor denotes a nonterminal symbol that appears on the left side
of another production. An identifier is composed of letters, digits, and the underscore character.
The keywords of the language are represented by productions whose identifier is given in upper-
case characters only.

— The word literal is used to denote a terminal symbol that cannot be expanded further. A literal is a
sequence of characters enclosed in apostrophes. For an apostrophe to appear in a literal it must be
written twice, i.e.™

— The semantics of the enclosing braces are defined below:
« curly bracketd{ }' indicates zero or more repetitions;
e square bracketp]' indicates optional parameters;

* parenthesi§)' indicates that the group of productions enclosed by parenthesis shall be used
as a single production;

« vertical bar|' indicates that exactly one of the terms in the expression shall be chosen.

The following notation is used to represent entire character sets and certain special characters which are
difficult to display:

10

©1SO ISO/NWI 10303-

— \a represents any character from ISO/IEC 10646-1;

— \n represents a newline (system dependent) (see clause 7.1.5.2 of ISO 10303-11:1994).

7. Basic language elements
This clause specifies the basic elements from which an EXPRESS-X mapping specification is com-
posed: the character set, remarks, symbols, reserved words, identifiers, and literals.

The basic language elements of EXPRESS-X are those of the EXPRESS language defined in Clause 7
of ISO 10303-11, with the exceptions noted below.

7.1 Reserved words

The reserved words of EXPRESS-X are the keywords and the names of built-in constants, functions,
and procedures. Any reserved word in EXPRESS (ISO 10303-11:1994) shall also be a reserved word in
EXPRESS-X. The reserved words shall not be used as identifiers. The reserved words of EXPRESS-X
are described below.

In the case that a legal EXPRESS identifier is a reserved word in EXPRESS-X, schemas using that
identifier can be mapped by renaming the conflicting identifier using the AS keyword in the REFER-
ENCE clause.

7.1.1 Keywords

In addition to the keywords of EXPRESS defined in ISO 10303-11:1994, the following are keywords of
EXPRESS-X.

Table 1 — Additional EXPRESS-X keywords

ALIAS EACH END_INLINE_FUNCTION END_MAP
END_SCHEMA_MAP END_SCHEMA_VIEW END_TYPE_MAP END_VIEW
EXTERNAL IDENTIFIED_BY IMPORT_MAPPING INLINE_FUNCTION
MAP PARTITION SCHEMA_MAP SCHEMA_VIEW
SOURCE TARGET TYPE_MAP VIEW

11

ISO/NWI 10303- ©1S0

8. Data types

This clause defines the data types provided as part of the language. Every view attribute, map attribute,
or type map has an associated data type.

The data types are the same as those for the EXPRESS language defined in clause 8 of
ISO 10303-11:1994, with the exceptions noted below.

8.1 Complex entity data type

Complex entity data types are established implicitly by entity declarations related in an inheritance
hierarchy (see ISO 10303-11:1994, clause 9.2). An entity data type is assigned an entity identifier by
the user. An entity data type is referenced by this identifier. A complex entity data type is referenced by
an expression that lists the partial complex entity data types that are combined to form it, separated by
the keyword AND.

The partial complex entity data types may be listed in any order.

Any partial complex entity data types that are included in another partial complex entity data type via
inheritance are not listed.

Syntax:

42 complex_entity spec = entity_reference AND entity _reference { AND
entity _reference }.

Rules and restrictions:
a) Each entity_ref shall be a reference to an entity which is visible in the current scope.

b) The referenced complex entity data type shall describe a valid domain within some schema (see
ISO 10303-11:1994, annex B).

c) A given entity_ref shall occur at most once within a complex_entity_ref.

EXAMPLE 2 — Given the following entity declarations:

ENTITY super SUPERTYPE OF ONEOF(a,c);
END_ENTITY;

ENTITY a SUBTYPE OF (super);
END_ENTITY;

ENTITY b SUBTYPE OF (super);
END_ENTITY;

ENTITY ¢ SUBTYPE OF (super);
END_ENTITY;

12

©1SO ISO/NWI 10303-

The following are valid complex entity data types:

a AND b

b AND c

The following are not valid complex entity data types:
a AND b AND super

a AND c

b AND ¢ AND ¢

8.2 View data type

View data types are established YWEW declarations (see clause 9.4). A view data type is assigned an
identifier in the defining schema map or schema view. A view data type is referenced by this identifier.

A value of a view data type is a view instance and may be produced by evaluating an explicit binding
expression.

NOTE — A single view_reference identifier designates both a view data type and an extent data type. The
intended construct in any particular situation may be discerned through examination of the EXPRESS-X
grammar.

Syntax:

138 view_reference = view_ref | primary_extended '.’ view_qualifier .

8.3 Extent data type

Extent data types are established explicitly WEW declarations (see clause 9.3) and implicitly by
source EXPRESS schentEENTITY declarations (ISO 10303-11;1994, clause 8.3.1). An extent data
type is assigned an identifier in the defining schema map or schema view. A extent data type is refer-
enced by this identifier.

NOTE — Asingle view_reference identifier designates both a view data type and an extent data type. The
intended construct in any particular situation may be discerned through examination of the EXPRESS-X
grammar.

Syntax:

48 extent_reference = source_entity _reference | view_reference .

Rules and restrictions:

a) extent_reference shall be a reference to an extent which is visible in the current scope.

13

ISO/NWI 10303- ©1S0

EXAMPLE 3 — The following declaration defines a view data type and extent data type, each
designated bgircle

VIEW circle;

FROM (e : ellipse);

WHERE (e.major_axis = e.minor_axis);
END_VIEW;

9. Declarations

This clause defines the various declarations available in EXPRESS-X. An EXPRESS-X declaration
creates a new EXPRESS or EXPRESS-X item and associates an identifier with it. The item may be ref-
erenced elsewhere by writing the name associated with it.

The principle capabilities of EXPRESS-X are found in the following declarations:
— View;

- Map;

Schema_view;

Schema_map;

Type_map.

In addition, an EXPRESS-X specification may contain the following declarations defined in
ISO 10303-11:1994:

Constant;

Function;

Procedure;

— Rule.

Mapping declarations are always explicit.

9.1 Schema_view declaration

A schema_view declaration defines a common scope for a collection of related mapping declarations. A
schema_view may contain the following kinds of declarations:

— constant declaration (clause 9.5);

14

©1SO ISO/NWI 10303-

— function declaration (clause 9.6);
— procedure declaration (clause 9.7);
— rule declarations (clause 9.10);

— view declaration (clause 9.3).
The order in which declarations appear within a schema_view declaration is not significant.

Declarations in one schema_view or EXPRESS schema may be made visible within the scope of
another schema_view via an interface specification as described in clause 11.

Syntax:

100 schema_view_decl = SCHEMA VIEW schema_view_id { reference_clause } [
constant_decl] schema_view_body element_list END_SCHEMA_VIEW ';'.
87 reference clause = REFERENCE FROM foreign_ref ['(" resource_or_rename
{',) resource_or_rename }")']";'.
98 schema_view_body_element = function_decl | procedure_decl | view_decl
| create_view_decl .

EXAMPLE 4 — ap203_arm names achema_view that may contain declarations defining a
view over the schemeonfig_control_design in terms of the domain expert’'s understand-
ing of the information requirements.

SCHEMA_VIEW ap203_arm;

REFERENCE FROM config_control_design;
VIEW part_version ...

(* other mapping declarations as appropriate *)
END_SCHEMA_VIEW,

9.2 Schema_map declaration

A schema_map declaration defines a common scope for a collection of related mapping declarations.

EXAMPLE 5 — iges2step names achema_map that may contain declarations for translat-
ing geometry defined using and EXPRESS model base upon IGES into a model based on ISO
10303-203.

SCHEMA_MAP iges2step;

REFERENCE FROM iges_express_schema;
MAP iges_structure ...

(* other mapping declarations as appropriate *)
END_SCHEMA_MAP;

15

ISO/NWI 10303- ©1S0

The order in which declarations appear withischema_map declaration is not significant. In partic-
ular, the order of the declarations has no effect upon the resulting mapping.

Declarations in onechema_map may be made visible within the scope of anotbelnema_map via
an interface specification as described in clause 11.

A schema_map may contain the following kinds of declarations:

constant declaration (clause 9.5);
— function declaration (clause 9.6);

— procedure declaration (clause 9.7);
— type_map declaration (clause 9.8);
— view declaration (clause 9.3);

— map declaration (clause 9.4);

— rule declaration (clause 9.10).

Syntax:

92 schema_map_decl = SCHEMA MAP schema_map id target_interface_spec
source_interface_spec { map_interface_spec } { external_functions_spec
} { type_mapping_stmt } [constant_decl] schema _map_body element_list
END_SCHEMA_MAP ';".
113 target_interface_spec = TARGET schema_ref or_rename {",
schema_ref or_rename}’';'.
105 source_interface_spec = SOURCE schema_ref or_rename {"',
schema_ref or _rename}"';'.
77 map_interface_spec = IMPORT_MAPPING schema_map_or_view_ref or_rename {
"' schema_map_or_view_ref or_rename}’;.
49 external_functions_spec = EXTERNAL function_head { function_head }
END_EXTERNAL ;.
117 type_mapping_stmt = TYPE_MAP target_type_reference {
target_type_reference } FROM source_type_reference {
source_type reference }';' { type_map_stmt_body } END_TYPE_MAP ;.
90 schema_map_body element = function_decl | procedure decl | view_decl |
create_view_decl | map_decl | create_map_decl .

The body of aschema_map shall have the same form as the body of@ema in ISO 10303-
11;1994, with the following exceptions:

Theschema_map shall include at least oiMAPdeclaration.

Theschema_map shall include darget_interface_spec declaration.

Theschema_map shall include &ource_interface_spec declaration.

16

©1SO ISO/NWI 10303-

— Theschema_map shall not include theinterface_specification declaration (defined
in ISO 10303-11;1994).

— Theschema_map shall not include theentity declaration (defined in ISO 10303-11;1994).

— Theschema_map shall not include thdype declaration (defined in ISO 10303-11;1994).
EXAMPLE 6 — This example illustrates the use of required EXPRESS-X declaratibns2 ,
t3 ,s1 ands2 designate EXPRESS scherother_map designates an EXPRESS-X schema.

SCHEMA_MAP map_name;
TARGET t1, t2, t2;
SOURCE s1, s2;
IMPORT MAPPING other_map;
END_SCHEMA_MAP;

9.3 Common clauses of the VIEW and MAP declarations

TheVIEW and theMAPdeclarations have the following clauses in common.

9.3.1 The FROM clause

The FROMclause identifies source extents (view extents and entity extents) from which a binding
extent is computed.

Syntax:

55 from_clause = FROM ('(" from_parameter_list)’ | from_parameter_list
).

57 from_parameter_list = from_parameter { ', from_parameter } .

56 from_paramete r = [parameter_id { parameter_id } "'] extent reference

Rules and restrictions:

a) parameter_id s shall be unique within the scope of MaAPor VIEW declaration.

9.3.2 The WHERE clause

TheWHERIElause defines an extensional membership predicate (an expression) in terms of parameters
bound by theFROMlause. Th&VHERElause, together with the source extents identified irFIROM

clause, defines the binding extent. A tuple is a member of the binding extent unless one or more domain
rule expressions of th&/HERI[Elause returns FALSE for the binding of parameters representing that
tuple.

17

ISO/NWI 10303- ©1S0

The syntax of th&VHERI[Elause is as defined in ISO 10303-11;1994, clause 9.2.2.2.

9.3.3 Identification of view and target instances

ThelDENTIFIED_BY clause and the binding defined by thROMlause provide mutually exclusive
constructs to identify view instances (in its usage in\EW) and target instances (in its usage in the
MAB. These constructs are used to uniquely identify view instances and target instances in explicit
binding calls (clause 12.1).

The IDENTIFIED_BY clause declares the structure of an internal ID. The internal ID is a key pro-
duced by the concatenation of values resulting from the evaluation oéxpeession s of the
identified_by_clause . The internal ID is a notional construct. There are no means within the
language to directly obtain or manipulate an internal ID.

Syntax:

58 identified_by clause = IDENTIFIED_BY expression { ',' expression } ;"

Rules and restrictions:

a) expression shall not evaluate to a value of type AGGREGATE.

The internal ID provides the following functionality:

— View instances or generated target instances can be related by the internal ID to the corresponding
source instances because the internal ID is built by an expression over source attributes values /
OIDs.

— The mapping engine automatically avoids unintended duplicates in the view / target. That is, inde-
pendent of the execution order of the mapping and independent of the starting point, it can be guar-
anteed that the same view / target instance is not generated more than once.

— Support of uniqueness constraints for view / target instances based on source information (and
therefore implicitly also on view / target information because it is derived / mapped from the
sources).

— The internal ID is used to specify relationship between view / target instances by the means of
explicit binding (clause 12.1).

18

©1SO ISO/NWI 10303-

EXAMPLE 7 — In the following, the source data set may contain multiple value equivalent
instances ohumber whereas the target population shall contain no value equivalent instances of
unique_number . Were nolDENTIFIED_BY clause specified for this example, the OID of the
source entitynumber (the binding) would have served as the internal ID and thus the target
instances ohumber may not have been value unique.

source schema: target schema:

ENTITY number; ENTITY unique_number;
its_value : INTEGER; its_value : INTEGER;

END_ENTITY; END_ENTITY;

MAP unique_number
FROM n : number
IDENTIFIED_BY n.its_value;

END_MAP;
NOTE — The declaration of a unique_number VIEW is similar to the MAP unique_number in EXAM-
PLE 7.

Although the internal ID uniquely identifies view instances and target instances, an internal ID may not
necessarily uniquely identify a binding in the binding extent. When a one-to-many relationship exists
between internal IDs and bindings, the following procedure is used to produce the view instance or tar-
get instances corresponding to the unique internal ID:

If the IDENTIFIED_BY clause and sources extents are such that two or more bindings correspond to
a single internal ID, then the values of attributes of the resulting view instance or entity instances is
computed as follows:

— If for each such binding, the evaluation of theiew_attr assgnmt_expr (or
map_attr_assgnmt_expr in the case of MAB of the attribute produces an equal value, that
value is assigned to the attribute.

— If for two or more bindings, the evaluation of theiew_attr_assgnmt_expr (or
map_attr_assgnmt_expr in the case of MARB of the attribute produces unequal values, an
indeterminate value is assigned to the attribute.

EXAMPLE 8 — Assuming that one instance of the target erditpartment corresponds to a
set of instance a&gmployee where all of them have the same value for the attritbegpe .

source schema: target schema:
ENTITY employee; ENTITY department;
name : STRING; employees : SET OF STRING;
manager : STRING; manager : STRING;
dept : STRING; name : STRING;
END_ENTITY; END_ENTITY;

19

ISO/NWI 10303- ©1S0

mapping:
MAP department
FROM e : employee
IDENTIFIED_BY e.dept;
SELECT
name = e.dept;
manager := e.managetr;
employees := e.name;
END_MAP;

Assuming that each department has exactly one manager and more than one employees, each
instance of the target entity department will have a value for the attributes name and manager but
an indeterminate value for employees.

NOTE — It will be shown below how the inline view resp. the for expression can be used to assign values
to a view / target attribute of type AGGREGATE and therefore to fold all source instances of employee
which have the same value for dept into one target instance of department.

9.4 View declaration

A VIEWdeclaration creates a view data type and declares an identifier to refer tlEVWdeclaration
defines one or more view expressions that may be evaluated for a given binding in the binding extent.

A VIEW declaration consists of one or more partitions. Each patrtition defines part of the entire view
extent. Partitions may be named; the name is optional if there is only a single partition.

20

EXAMPLE 9 — The following view collects the information about persons serving in roles
within organizations. This information is collected from two instances of person_and_organization
and cc_design_person_and_organization_assignment. The two instances must be related via the
assigned_person_and_organization attribute of the
cc_design_person_and_organization_assignment. Three attribute reference expressions are given.

VIEW arm_person_role_in_organization;
FROM (pao : person_and_organization,
ccdpaoa : cc_design_person_and_organization_assignment)

WHERE ccdpaoa.assigned_person_and_organization :=: pao;
SELECT

person : person := pao.the_person;

org : organization := pao.the_organizaion;

role : label := ccdpaoa.role.name;
END_VIEW;

©1SO ISO/NWI 10303-

Syntax:

130 view_decl = VIEW view_id ;' [subtype_of clause] (view_partitions |
view_decl_body) END_VIEW ;' .

134 view_partition = PARTITION [partition_id ":'] view_decl_body .

131 view_decl_body =[from_clause] [identified_by clause][
where_clause] [view_project_clause] .

Rules and restrictions:

a) If in a view_decl a subtype_of_clause is specified, no from_clause shall be declared in the
view_decl _body s of any partition.

b) If no subtype_of_clause is specified, the from_clause in any view_decl_body of this view_decl
is mandatory.

c) Each attribute expression reference declared in the view declaration shall be unique within the
declaration.

9.4.1 View attributes

An attribute of a view data type represents a property whose value is computed as the evaluation of its

view_attr_assgnmt_expr , an expression, in order to create a view instance. Each view attribute
declaration identifies a distinct property.

The name of a view attributevigw_attribute_id) represents the role played by it associated
value in the context of the view in which it appears.

The expression represented byiew_attr_assgnmt_expr is evaluated in the context of a given
binding in the binding extent. The evaluation may produce a reference to source data, a full or partial
view extent, or an aggregate of type SET with a base type that is an entity data type or view data type.

Syntax:

136 view_project_clause = SELECT (extent_reference |
view_attr_decl_stmt_list) .
120 view_attr_decl_stmt_list = view_attribute_decl { view_attribute_decl }

121 view_attribute_decl = view_attribute_id "' [source_schema_ref '."]
base_type "='view_attr_assgnmt_expr ;' .

119 view_attr_assgnmt_expr = expression | view_cond_attr_expr |
view_case_expr | inline_view_decl | view_call .

Rules and restrictions:

a) The expression ekpression , view_cond_attr_expr , view_case_expr
inline_view_decl , view_call) shall be assignment compatible with the data type of

21

ISO/NWI 10303- ©1S0

the view attribute.

b) Every view attribute of a view instance shall have a value.

EXAMPLE 10 — circle names a view extent defined to contain all ellipse instances with
equal length major and minor axes. For a given binding in the binding extent, the mapping engine

evaluates the expressioasemi_axis_1 ande.position to obtain values of theadius
andposition view attributes, respectively.

VIEW circle;
FROM (e : ellipse) WHERE e.semi_axis_1 = e.semi_axis_2;
SELECT
radius : positive_length_measure := e.semi_axis_1;
position : axis2_placement := e.position;
END_VIEW;

9.4.2 View partitions

A view extent is the union of the extents defined by its partitions. IMHi&N declaration contains more
than one partition, the partitions shall be namega#ition_id names a partition.

EXAMPLE 11 — In1SO 10303-201, the application objecganization may be mapped to
either aperson , anorganization , or both aperson andorganization entity in the
AIM. This is specified in EXPRESS-X as follows:

VIEW arm_organization
PARTITION a_single_person :
FROM (p : person)

PARTITION a_single_organization :
FROM (o : organization)

PARTITION a_person_in_an_organization :
FROM (po : person_and_organization)

END_VIEW,

Syntax:

134 view_partition = PARTITION [partition_id ":'] view_decl_body .

Rules and restrictions:

a) All partitions of aVIEW declaration shall define the same attributes (including names and

types)

22

©1SO ISO/NWI 10303-

b) The attributes of ¥IEW declaration shall appear in the same order in each of its partitions..

9.4.3 Specifying subtype views

EXPRESS-X allows for the specification of views as subtypes of other views. A view is a subtype if it
contains &SUBTYPHleclaration. The extent of a subtype view is a subset of the extent of its supertype
as defined by the extensional membership predicate defined WHERElause in the subtype.

A VIEW declaration containing @UBTYPEdeclaration shall not contairFlROMleclaration.

A subtypeVIEW may inherit attributes from its supertype. Inheritance of attributes shall adhere to the
rules and restrictions of attribute inheritance defined in ISO 10303-11;1994 clause 9.2.3.3.

A subtypeVIEW declaration may redefine attributes found in one of its supertypes. The redefinition of
attributes shall adhere to the rules and restrictions of attribute redistribution defined in 1ISO 10303-
11;1994 clause 9.2.3.4.

EXAMPLE 12 — The following view illustrates subtyping. The viemale defines an additional
membership requiremergénder = ‘M’) for view instances of the subtype.

VIEW person;
FROM ...
END_VIEW,;

VIEW male SUBTYPE OF person,;
WHERE gender ='M";

END_VIEW,

9.5 Map declaration

The MAP declaration supports the specification of correspondences between semantically equivalent
elements of two or more EXPRESS models possessing differing structure M2ddeclaration spec-

ifies how base instances of one or more types are to be mapped to target instances. That is, a MAP dec-
laration supports, in a single declaration, the mapping from many target entities to many source entities.

A MAP declaration consists of a header and body of one or more map statements. The purpose of the
header is to define the conditions under which one or more new target instance(s) should be created
from one or more instances in a base model. ap_decl_body defines how the values of the
attributes for a newly created instance are to be computed. The concept of alternative views, i.e. parti-
tions, is also available for maps.

23

ISO/NWI 10303- ©1S0

Syntax:

74 map_decl = MAP map_decl _header ((map_decl body { map_partitions }) |
map_decl_body) END_MAP ;" .

78 map_partition = PARTITION [partition_id "'] map_decl_body .

75 map_decl_body = ((from_clause [identified_by clause]) |
subtype_of clause) [where_clause] { entity_instantiation_loop } [
map_project_clause] .

9.5.1 Header of the MAP declaration

The header identifies one or more entity types defined explicitly or implicitly in the target EXPRESS
schema. It is not required that those target entity types are related to each other by relationships.

Syntax:

76 map_decl_header = target_entity ref list [NAMED network_id] .
111 target _entity ref list el = [target_entity alias_id "' [LIST
bound_spec OF]] target_entity _reference .
112 target_entity_reference = entity_reference | complex_entity_spec |
target_schema_ref "' '(' complex_entity_spec).

Rules and restrictions:

a) For each entity type appearing in ttagget_entity ref list none of its supertypes
shall appear in the list.

A target entity type shall not be mapped in more thani#d>declaration in which the headers of those
declarations consist only of a single target entity type. However, one target entity can be mapped in
more than onédIAPdeclarations (say n), if n-MAPdeclarations are group mappings. To support the
call of a target entity mapping inside a group mapping, the MAP declaration of the group mapping is
given a namegfoup_name).

NOTE — A single target entity type may be mapped in various ways by means of partitions.

EXAMPLE 13 — In the example below, a pump in the source data model is mapped to a set of
target entities.

MAP xx AS group_for_pump
FROM p : pump

-- attribute mappings of the target entities
END_MAP;

The initial values of the attributes of the newly created instance(s) are indeterminate.

24

©1SO ISO/NWI 10303-

9.5.2 The SELECT clause

The SELECTclause is needed if source attributes have to be projected in the view / target entity or if a
specific entity of multiple FROM clause entities have to be mapped to the view / target entity identically
(same attributes with same values). In the latter case, just this entity is specified after the SELECT key-
word. If view / target attributes are not identical to the source schema due to their structure or due to
their values, then the SELECT clause contains the attribute assignment statements to specify which
view / target attributes have to be built by which expression over the source data. Those attribute assign-
ment statements are different for the VIEW and the MAP declaration as shown in the subsequent sec-
tions.

TheMAPdeclaratiorSELECTclause identifies data that shall appear in the target data set.

The syntactic fornBELECT extent_reference declares that an entity instance value equivalent
to that bound textent_reference shall appear in the target data set.

The syntactic form SELECT map_attribute_decl_block assigns values
(map_attr_assgnmt_expr) to the target entity attributes (I-values) identified by the syntactic
form [entity_reference] ‘.’ attribute_ref

Syntax:

80 map_project_clause = SELECT (extent_reference |
map_attribute_decl_block).

68 map_attribute_decl_block = map_attr_decl_stmt_list .

67 map_attr_decl_stmt_list = map_attribute_declaration {
map_attribute_declaration } .

69 map_attribute_declaration = [entity_reference '.'] attribute_ref
"='map_attr_assgnmt_expr ;" .

9.5.3 Partitions within a MAP declaration

The partition concept is the same as described withinvtidV declaration (see clause 9.3.1). It is
extended so that partitions can be defined for a list of target entities.

If multiple target entities are listed in the header of MAPdeclaration, different subset of those enti-
ties can be used for the partitions.

Syntax:

78 map_partition = PARTITION [partition_id ":'] map_decl|_body .

Rules and restrictions:

a) If the MAP declaration contains more than one partition, the partitions shall be named.

25

ISO/NWI 10303- ©1S0

b) All partitions must define the same attributaisripute_ref) and types.

9.5.4 Inheritance

If an inheritance hierarchy is defined in the target EXPRESS schema, the MAP declaration of the super-
type must specify the mapping for all instances of this supertype, i.e. all direct instances and all
instances of all its subtypes. If the mapping for the subtypes is not the same, partitions must be speci-
fied.

EXAMPLE 14 — Inheritance for MAP declaration.

target schema: source schema:

ENTITY person; ENTITY male;
name : STRING; name : STRING;

END_ENTITY; END_ENTITY;

ENTITY male; ENTITY female;
SUBTYPE_OF person; name : STRING;
END_ENTITY; END_ENTITY;

ENTITY female;
SUBTYPE OF person;
END_ENTITY;

mapping specification:

MAP person

PARTITION female_person :
FROM female

PARTITION male_person :
FROM male

END_MAP;

MAP male

SUBTYPE OF person
PARTITION male_person
END_MAP;

MAP female;

SUBTYPE OF person
PARTITION female_person
END_MAP;

Alternatively, the clauses inside the partition can be specified in the subtypes and only referenced in the
supertype. Once they are defined, the constraints which are specified for an specific view can be
extended in subviews.

The mapping of supertypes or subtypes cannot be specified in a network mapping.

26

©1SO ISO/NWI 10303-

9.6 Create declaration

The CREATHleclaration defines the form of an entity that shall be created in the target data set.

Syntax:

43 create_map_decl = CREATE instance_id INSTANCE_OF
target_entity reference ';' map_attr_decl_stmt_list END_CREATE ';'.

9.7 Constant declaration

Constants may be defined for use within the WHERE clause of a view or map declaration, or within the
body of a map declaration or algorithm.

Constant declarations are as defined in ISO 10303-11:1994 clause 9.4.

9.8 Function declaration

Functions may be defined for use within the WHERE clause of a view or map declaration, or within the
body of a map declaration.

Function declarations are as defined in ISO 10303-11:1994 clause 9.5.1.

9.9 Procedure declaration

Procedures may be defined for use within the body of a map declaration.

Procedure declarations are as defined in ISO 10303-11:1994 clause 9.5.2.

9.10 Rule declaration
Rules may be defined for use within the SCHEMA_VIEW and SCHEMA_MAP clause.

Rule declarations are as defined in ISO 10303-11:1994 clause 9.6.

9.11 Type map declaration

A type map declaration specifies how a value of a defined type is mapped to a value of another type
within the scope of a schema map.

27

ISO/NWI 10303- ©1S0

Syntax:

117 type_mapping_stmt = TYPE_MAP target_type_reference {
target_type_reference } FROM source_type_reference {
source_type reference } ;' { type_map_stmt_body } END_TYPE_MAP ;.
116 type_map_stmt body =[schema_ref'.'] base_type "=
type_assgnmt_expr ';".

EXAMPLE 15 — The following specifies the mapping between the tgpktsr anddmark .

TYPE_MAP dmark FROM dollar;
dmark := 1.5 * dollar;
dollar := dmark / 1.5;
END_TYPE_MAP;

The mapping is applied whenever the source attribute type is type compatible with one of the first types
and the target attribute type is type compatible with one of the second types.

Rules and restrictions:
a) Body is not needed if just renaming.

b) No more than two expressions; if second is omitted then reverse mapping is implicit.

c) The two expressions shall be inverses of each other.

d) No entity instances shall be mapped by the TYPE_MAP. The base type shall not be an entity
type.

10. Scope and visibility

An EXPRESS-X declaration creates an identifier that can be used to reference the declared item in
other parts of the schema_view (or in other schema_views). Some EXPRESS-X constructs implicitly
declare items, attaching identifiers to them. In those areas where an identifier for a declared item may
be referenced, the declared item is said to be visible. An item may only be referenced where its identi-
fier is visible. For the rules of visibility, see clause 10.2 For further information on referring to items
using their identifiers, see clause 12.

Certain EXPRESS-X items define a region (block) of text called the scope of the item. This scope limits
the visibility of identifiers declared within it. Scope can be nested; that is, an EXPRESS-X item which
establishes a scope may be included within the scope of another item. There are constraints on which

items may appear within a particular EXPRESS-X item’s scope. The constraints are usually enforced
by the syntax of EXPRESS-X.

28

©1SO ISO/NWI 10303-

For each of the items specified in table 2 below the following subclauses specify the limits of the scope
defined, if any, and the visibility of the declared identifier both in general terms and with specific

details.

Table 2 — Scope and identifier defining items
ltem Scope Identifier
view attribute .
view . .
partition . :
schema_view . .

10.1 Scope rules
The general scope rules are as defined in ISO 10303-11:1994.

10.2 Visibility rules
The general visibility rules are as defined in ISO 10303-11:1994.

10.3 Explicit item rules

The following clauses provide more detail on how the general scoping and visibility rules apply to the
various EXPRESS-X items.

10.3.1 Schema_view

Visibility: A schema_view identifier is visible to all other schema_views.

Scope: A schema_view declaration defines a new scope. This scope extends from the keyword
SCHEMA_VIEW to the keyword END_SCHEMA_VIEW that terminates that schema_view declara-

tion.

Declarations: The following EXPRESS-X items may declare identifiers within the scope of a
schema_view declaration:

— constant;

29

ISO/NWI 10303- ©1S0

— function;
— map;

— procedure;
— rule;

— type_map;

— view.

10.3.2 View

Visibility: A view identifier is visible in the scope of the function, procedure, rule, or schema_view in
which it is declared. A view identifier remains visible within inner scopes which redeclare that identi-
fier.

Scope:A view declaration defines a new scope. This scope extends from the keyword VIEW to the
keyword END_VIEW which terminates that entity declaration.

Declarations: The following EXPRESS-X items may declare identifiers within the scope of a view
declaration:

— Vview expression;

— patrtition label.

10.3.3 View partition label

Visibility: A partition label is visible in the scope of the view in which it is declared.

10.3.4 View expression

Visibility: A view expression identifier is visible in the scope of the view in which it is declared.

11. Interface specification

This clause specifies the constructs that enable items declared in one schema, schema_view, or
schema_map to be visible in another schema_view or schema_map. The REFERENCE specification
allows enables item visibility.

30

©1SO ISO/NWI 10303-

Syntax:

77 map_interface_spec = IMPORT_MAPPING schema_map_or_view_ref or_rename {
' schema_map_or_view_ref or_rename}’;.

94 schema_map_or_view_ref or_rename = schema_map_ref_or_rename |
schema_view_ref _or_rename .

95 schema_map_ref or_rename = [schema_map_alias_id ":'] schema_map_ref

102 schema_view_ref or_rename = [schema_view_alias_id "']
schema_view_ref .

A foreign declaration is any declaration which appears in a foreign schema, schema_view, or
schema_map (which is not the current schema_view or schema_map).

A foreign EXPRESS or EXPRESS-X item may be given a new name in the current schema_view or
schema_map. The item shall be referred to in the current schema by the new name if given following
the AS keyword. This can be used in order to rename EXPRESS items that would otherwise use
EXPRESS-X reserved words as their identifier.

11.1 Reference interface specification

A REFERENCE specification enables the following items, declared in a foreign schema, schema_view,
or schema_map, to be visible in the current schema_view or schema_map:

— View;

— Map;

— Type_map;
— Constant;

— Entity;

— Function;

— Procedure;
— Type.

The REFERENCE specification gives the name of the foreign schema, and optionally the names of
EXPRESS or EXPRESS-X items declared therein. If there are no names specified, all the items
declared in the foreign schema, schema_ view, or schema_map are visible within the current
schema_view or schema_map.

31

ISO/NWI 10303- ©1S0

Syntax:

87 reference clause = REFERENCE FROM foreign_ref ['(' resource_or_rename
{', resource_or_rename }")']";".
53 foreign_ref = schema_ref | schema_view_ref | schema_map_ref .

Rules and restrictions:

11.2 Implicit interfaces

11.3 SCHEMA_MAP interfaces

A schema_map interface specification allows items defined in foreign schema to be visible within the
schema map. It also define the source and target schemas.

Syntax:

92 schema_map_decl = SCHEMA_MAP schema_map _id target_interface_spec
source_interface_spec { map_interface_spec } { external_functions_spec
} { type_mapping_stmt } [constant_decl] schema_map_body_element_list
END_SCHEMA_MAP ';".

11.3.1 Source schema interface

The source schema interface specifies the name of the source schema.

Syntax:

105 source_interface_spec = SOURCE schema_ref_or_rename {"'/
schema_ref or_rename}’;' .

11.3.2 Target schema interface

The target schema interface specifies the name of the target schema.

Syntax:

113 target_interface_spec = TARGET schema_ref or_rename { ",
schema_ref or rename}"’;'.

32

©1SO ISO/NWI 10303-

11.3.3 Map interface

The map interface specifies how one SCHEMA_MAP may reference another.

Syntax:

77 map_interface_spec = IMPORT_MAPPING schema_map_or_view_ref _or_rename {
') schema_map_or_view_ref_or_rename }’;.

11.3.4 External functions

The external functions interface specifies the interface to a function that is not defined in EXPRESS but
is defined externally and will be called as part of the mapping.

EXAMPLE 16 — A mapping may call an external function to convert geometry from advanced
BREP into a faceted representation.

Syntax:

49 external_functions_spec = EXTERNAL function_head { function_head }
END_EXTERNAL ';'.

12. Expressions

Expressions are combinations of operators, operands, and function calls that are evaluated to produce a
value. Anything that is an expression as defined in ISO 10303-11:1994 clause 12 is also a valid expres-
sion in EXPRESS-X. In addition, the following subclauses describe how expressions may be used with
bindings and extents.

Precedence of operators and the order of evaluation of expressions are as defined in ISO 10303-11:1994
clause 12.

Entity constructors create instances that are local only to the function or procedure and do not exist in
either the target or the source.

12.1 Explicit binding

The main intention behind the explicit binding is to specify relationships between view/ target
instances within the mapping specification. That is, this concept supports the generation of links
between view / target instances based on the assumption that the corresponding source instances are
also related (via some path expressions or equivalence of attribute values). The explicit binding expres-

33

ISO/NWI 10303- ©1S0

sion is specified for the attribute assignment statement of the attribute which represents the relationship
in the view / target entity. The generation of such a relationships requires the name of the view / target
entity which is referenced and some expression to select the specific instance(s) to be referenced. That
is, it has to be specified on the schema level which views / target entities have to be related and it has to
be specified also on the instance level which instances of those views / target entities have to be related.

This relationship is specified in a function-like style where the name of the referenced view / target
entity is the function name (the so-called explicit-binding operator's name).

The so-called expression of the explicit-binding operator is then used to select the specific instances
which have to be referenced. For this purpose, the expression is evaluated and the resulting value is
them compared with the value of the internal ID(s) of the referenced entity (specified by the
IDENTIFIED_BY clause). An example is given below.

EXAMPLE 17 — Explicit binding concept.

source schema:

ENTITY approval;
id : STRING;
creator : STRING;

END_ENTITY;

source instance set:

#1 = approval(a_1’",’miller’);
#2 = approval(’a_2’,’jones’);
#3 = approval('a_3','miller");

target schema:
ENTITY person,;

id : STRING;
END_ENTITY;
ENTITY design_order;
id : STRING;
approved_by : person;
END_ENTITY;
In this mapping example, it is assumed thdesign_order.id corresponds to
approval.id , person.id corresponds tapproval.creator , and design_order

referenceperson via the attributeapproved_by wheredesign_order andperson cor-
respond to the sanmapproval . Furthermore, it is assumed that if more than one source instance
of approval.creator exist with the same, only one target instancepefson has to be gen-
erated. This is achieved by the following VIEW declaration.

34

©1SO ISO/NWI 10303-

MAP person
FROM a : approval
IDENTIFIED_BY a.creator

SELECT

id := a.creator;

of _design_order := design_order(a);
END_MAP;
The IDENTIFIED_BY clause ensures that target instancgmeofon are unigue w.r.t. the source
attributeapproval.creator . That is, from source instances approval having the same
value ofcreator only one target instance pkerson is generated. The target instanepef-
son are internally identified by the attribute valapproval.creator of the corresponding

source instances.

MAP design_order
FROM a : approval
IDENTIFIED_BY OID(a) -- optional because default
SELECT

id := a.id;

approved_by := person(a.creator); -- explicit binding
END_MAP;

The name of the explicit-binding operator states that target instancesigin_order have to
be linked toperson via the attributeapproved_by . So far, it is not clear which target instances
of design_order have to be linked to which instancespdrson . This is done by the expres-
sion of the explicit-binding operator. The value afproval.creator is compared with the
internal IDs of the target instances @lerson . For example, the target instaneé of
design_order has to be linked to the target instanégd of person , because this
design_order is mapped from the source instance oépproval having the value
'miller’ for approval.creator and this is the internal ID of target instaride

Generated target instance set:

#1 = person('miller’); -- internal 1D 'miller’, mapped from #1,#3
#2 = person(’jones’); -- internal ID 'jones’, mapped from #2
#3 = design_order(a_1'#1); -- internal ID #1, mapped from #1
#4 = design_order('a_3',#2); -- internal ID #2, mapped from #2
#5 = design_order(a_3',#1); -- internal ID #3, mapped from #3

NOTE — The same concept is supported by the MAP declaration.

The explicit binding has to be specified using the following syntax.

Syntax:

70 map_call = entity_reference ['@' network_or_partition_qualification]
‘(' expression { ', expression })" .

82 network_or_partition_qualification = network_ref | [network_ref "."]
partition_ref .

35

ISO/NWI 10303- ©1S0

An explicit binding is used to specify a particular member of an extent. by providing instances which
are bound to the variables in the FROM clause, using a function-like syntax. The result of an explicit
binding is a binding data type.

If an IDENTIFIED_BY clause is present in the definition of the extent, then the arguments of the
explicit binding shall match that clause.

EXAMPLE 18 — Explicit bindings are useful for describing a relationship between two views: :

VIEW my_line;
FROM (I : line);
SELECT

point : my_point := my_point(l.pnt);

END_VIEW;
VIEW my_point;
FROM (cp : cartesian_point)

12.2 Partial explicit binding

A partial explicit binding is an explicit binding in which one or more of the parameters is indeterminate.
The result of a partial explicit binding is the subset of the extent that matches the parameter values that
are provided.

EXAMPLE 19 — In the following, the various versions associated with a part are collected by
using a partial explicit binding. The result will be the subset of the extent for which the second
component of the binding is equal to the specified product instance.

VIEW part;
FROM (p : product)
SELECT
versions : SET OF version_and_its_product
:= version_and_its_product(?, p);
END_VIEW;

VIEW version_and_its_product;
FROM (pdf : product_definition_formation, p : product)
WHERE p :=: pdf.of_product;
SELECT

the_version : product_definition_formation := pdf;
END_VIEW;

36

©1SO ISO/NWI 10303-

12.3 Inline views

An inline view is the definition and evaluation of a view simultaneously. Inline views do not have
names, and may not be bound to explicitly. The result of an inline view is an extent (i.e., a set of bind-

ings).

EXAMPLE 20 — In the following example the versions of a part are collected by using an inline
view.

VIEW part
FROM (p : part)
SELECT
versions : SET OF product_defintion_formation
= VIEW FROM (pdf : product_definition_formation)
WHERE pdf.of_product :=: p;
END_VIEW;

An inline view can always be replaced with an explicit or partial binding to a named view.

12.4 Operations on extents

An extent is a set of bindings; as such, it may be used in expressions where a set is appropriate, and in
particular an extent may be iterated over to visit each binding.

12.5 View expression evaluation

Given a binding, a view attribute expression may be evaluated. The result will be an instance in the
underlying data set, a binding, or an extent.

12.6 FOR expression

The FOR expression is introduced for attribute assignment statements of MAP declarations to process a
set of elements and to assign a set as a result to the target attribute. For this purpose, an iteration mech-
anism is used where all elements of the set can be processed step by step, selected, and manipulated.

The iteration of the FOR expression is controlled either by the repeat control known from EXPRESS
(cf., ??7?). Alternatively, a more declarative approach can be specified using the FOR EACH concept. In
the latter case, the following clauses are available.

— The EACH clause defines the (name of the) iterator variable. That is, in each processing step of the
loop of the FOR expression, an element of the set is assigned to this iterator. The set is determined
by the IN- (and the FROM-) clause.

— The IN clause specifies the set over which it has to be iterated over. This is either an (entity)

37

ISO/NWI 10303- ©1S0

38

extend. In this case the FROM clause is optional. That is, if it shall be iterated over exact one
(entity) extent without further restrictions the FROM clause need not to be specified. Alternatively,
if it shall be iterated over an extent which is built upon many joined source extents, the FROM
clause (and the WHERE clause) are needed.

In addition to the entity extent, it can also be iterated over an attribute of type AGGREGATE. In
this case, the FROM clause is optional: if the source entity of this attribute to be iterated over is not
specified in the FROM clause of the MAP declaration, it must be specified in the FROM clause of
the FOR expression.

The FROM clause of the FOR expression has the same semantics as the FROM clause of the MAP
declaration (cf., ???).

The WHERE clause of the FOR expression has the same semantics as the WHERE clause of the
MAP declaration (cf., ??7?).

The RETURN clause specifies an expression which has to be processed for each element during
the iteration. All processed elements together build the result aggregate which is returned to the
target attribute.

EXAMPLE 21 — FOR expression.

Source schema:

ENTITY product_definition;
product_name : STRING;
description : STRING;

END_ENTITY;

ENTITY product_definition_name,;

name : STRING;

of_product_definition : product_definition;
END_ENTITY;

Target schema:

ENTITY component;
names : SET [0:?] OF STRING;
product_name : STRING;
description : STRING;

END_ENTITY;

In this example, the target entitycomponent maps to the source entity
product_definition and all instances gfroduct_definitio_name which reference
one instance ofproduct_definition are grouped into the target attribumpo-

nent.names . This is specified as follows.

©1SO ISO/NWI 10303-

Mapping definition:
MAP component
FROM pd : product_definition
SELECT
description := pd.description;
product_name := pd.product_name;
names := FOR EACH pdn_instance
IN pdn
FROM pdn : product_definition_name
WHERE pdn.of_product_definition :=: pd
RETURN pdn_instance.name
END_MAP;

This example also shows that the scope of the FROM clause of the MAP declaration can be extended by
the FROM clause of an FOR expression within this MAP declaration. That is,
product_definition_name is not within the scope of the root entity of the FROM clause of the
MAP declarationproduct_definition . In this case, the FOR expression specifies the so-called
outer join operation. That is, for each instancepofduct_definition a target instance afom-

ponent is built independent of the existence of instanceprofluct_definition_name which
references thiproduct_definition . If such instances ofroduct_definition_name do

not exist, the value oEomponent.names is the empty set. Otherwise, those instances (resp. the
valueproduct_definition_name.name) are assigned to the attribudemponent.names

The RETURN clause can be nested in order to map attributes which are of type AGGREGATE OF
AGGREGATE. This is shown in the following example.

EXAMPLE 22 — Nested FOR expression. The example 21 is extended as follows.

Source schema:

ENTITY product_definition;
(* as defined in Ex. 21 *)

END_ENTITY;

ENTITY product_definition_name;
(* as defined in Ex. 21 *)
END_ENTITY;

ENTITY product_definition_value;
of _pdn : product_definition_name;
value : STRING;

END_ENTITY;

Target schema:

ENTITY component;
values : SET [0:?] OF SET [0:?] OF STRING;
product_name : STRING;
description : STRING;

END_ENTITY;

39

ISO/NWI 10303- ©1S0

In addition to example 21, all instances mfoduct_definition_value which reference
one instance oproduct_definition_name are grouped together and are assigned to the
inner aggregate afomponent.values . This is specified as follows.

Mapping definition:
MAP component
FROM pd : product_definition
SELECT
description := pd.description;
product_name := pd.product_name;
names := FOR EACH pdn_instance
IN pdn
FROM pdn : product_definition_name
WHERE pdn.of_product_definition :=: pd
RETURN FOR EACH pdv_instance
IN pdv
FROM pdyv : product_definition_value
WHERE pdv.of_pdn :=: pdn_instance
RETURN pdv_instance.value;
END_MAP;

The FOR expression also supports the so-called parallel iteration. That is, two or more iterator variables
are assigned to elements of sets. During each step of the iteration loop, all the iterator variables are
assigned to the next element of the corresponding set. This is shown in the following example.

40

EXAMPLE 23 — Parallel iteration with the FOR expression.

Source schema:
ENTITY persons;
firsthame : SET [0:?] OF STRING;
lastname : SET [0:?] OF STRING;
END_ENTITY;

Target schema:
ENTITY set_of persons;

name : SET [0:?] OF STRING;
END_ENTITY;

It is assumed thgbersons.firstnameli] corresponds tpersons.lastnameli] and
that those two values have to be concatenated and have to be assigned to
set_of_persons.name(i]

Mapping specification:
MAP set_of persons
FROM p : persons
SELECT
name := FOR EACH firsthame_value IN p.firsthame AND
EACH lastname_value IN p.lasthame
RETURN firsthname_value + lastname_value;
END_MAP;

©1SO ISO/NWI 10303-

This example also shows that the FROM clause of the FOR expression is optional when it is a sub-
set of the FROM clause of the MAP declaration. In this example, no predicates are needed to select
specific elements of the extent which is given by the IN clause. Thus, the WHERE clause is omit-
ted.

Syntax:

50 for_expr = foreach_expr | forloop_expr .

51 foreach_expr = FOR EACH variable_id IN foreach_in_clause_arg { AND
variable_id IN foreach_in_clause_arg } [from_clause] [where_clause]
RETURN map_attr_assgnmt_expr ;' .

52 foreach_in_clause_arg = attribute reference | view_attribute reference
| extent_reference .

54 forloop_expr = FOR repeat_control RETURN map_attr_assgnmt_expr ;' .

Rules and restrictions:

a) The target attribute of the attribute assignment statement where the FOR expression is used in
must be of type AGGREGATE.

12.7 Conditional expression

This concept is introduced for MAP declarations so that a specified expression is assigned to a target
attribute under some condition (or, else another expression is assigned). The conditional expressions
can be nested.

Syntax:

73 map_cond_attr_expr = IF boolean_expression THEN map_attr_assgnmt_expr
[ELSE map_attr_assgnmt_expr] END_IF ;" .

12.8 CASE expression
The CASE expression is similar to the CASE statement of EXPRESS.

41

ISO/NWI 10303- ©1S0

EXAMPLE 24 — CASE expression.

MAP my_approval

FROM a : approval

SELECT

status := CASE a.status OF
‘approved’ :1;
'not approved’ : -1;
'indetermined’ : O;
OTHERWISE :2;
END_CASE;
END_MAP;

Syntax:

40 case_expr = CASE selector OF { case_expr_action } [OTHERWISE "'
expression]| END_CASE ;' .

41 case_expr_action = case_label {',' case_label } ":' expression .

71 map_case_expr = CASE selector OF { map_case_expr_action } [OTHERWISE
""map_attr_assgnmt_expr] END_CASE ;' .

72 map_case_expr_action = case_label {',' case label } "'
map_attr_assgnmt_expr .

13. Executable statements

EXPRESS-X has sixteen types of statements for use inside MAP declarations. Many of these statement
types are taken directly from EXPRESS. Those that are either not in EXPRESS or are modified from
their definition in EXPRESS include: the assignment statement, the FROM statement, the WHEN state-
ment, the initialize statement, the DELETE statement, and the instantiation statement.

13.1 FOR clause

The FOR clause is used to control the instantiation of target instances. Without the FOR clause, for
each qualified source instance or set of source instances given by the FROM and WHERE clause one
target instance of each entity listed in the mapping header (target_entity ref _list). The FOR clause
allows to instantiate more than one target instance.

The FOR clause specifies a loop-control statement before the SELECT clause, i.e., before the attribute-
assignment statements. The loop-control specifies the exact number of target instances that are built
from each qualified source instance resp. set of qualified source instances. The attribute-assignment
statements defines the mapping of all attributes of one or many target entities to some expressions.

42

©1SO ISO/NWI 10303-

Syntax:

45 entity_instantiation_loop = FOR instantiation_loop_control ;" .

65 instantiation_loop_control = instantiation_foreach_control |
repeat_control .

64 instantiation_foreach_control = EACH variable_id IN
source_attribute_reference [WITH_INDEX variable_id] { AND
variable_id IN source_attribute_reference [WITH_INDEX variable id] }

Rules and restrictions:

a) variable_id after the keyword EACH is of the same type as the elements of
source_attribute_reference.

b) variable_id after the keyword INDEXING is of type NUMBER with values greater than one.

The loop control statement defines either an iterator over elements of a source attribute of type aggre-
gate or it defines an iterator in a very similar way to the EXPRESS repeat loop.

In the first case, a so-called unnest operation will be applied. That is, the loop-control statement defines
an iteration over a source attribute of type aggregate. In each iteration step, the next element of the
source attribute is assigned to a variable and optionally the index position is assigned to a iterator vari-
able. The value of this element can thus be used inside the FOR statement. For example, for each ele-
ment of the source attribute of type aggregate a target instance can be generated and the element value
can be assigned to a corresponding target attribute of type .

EXAMPLE 25 — In the following example, all item versions of one item are grouped together in

the source data model. In contrast, each item version is a stand-alone instance in the target data
model. This example shows that the FOR loop specifies an iteration over the elements of the
source attributdtem_with_versions.id_of versions . For each source instance and

for each element in that attribute a target instance is created. The target attebuted is

mapped in the same way for all the target instances whidteof_version which correspond

to the same underlyinigem_with_versions . The target attributeersion_id is assigned

to the value of the iterator variablersion_iterator

ENTITY item_version, --target data model
item_id : STRING;
version_id : STRING;

END_ENTITY;
ENTITY item_with_versions; -- source data model
id : STRING;
id_of_versions : LIST OF STRING;
END_ENTITY;

43

ISO/NWI 10303- ©1S0

MAP iv : LIST [0:?] OF item_version
FROM iwv : item_with_versions;
FOR EACH version_iterator OF iwv.id_of versions INDEXING i

SELECT
iv[il.item_id :=iwv.id;
iv[i].version_id := version_iterator;
END_MAP;

For example, the following target instances are built from the source instance below.
Source instance set:

#1 = item_with_versions(1,(10,11,12));
Target instance set:

#1 = item_version(1,10);
#2 = item_version(1,11);
#3 = item_version(1,12);

Alternatively, the repeat-loop control statement known from EXPRESS can be used to specify the itera-
tion steps.

EXAMPLE 26 — In the following example, all item versions of one item are grouped together in

the source data model. In contrast, each item version is a stand-alone instance in the target data
model. This example shows that the FOR loop specifies an iteration over the elements of the
source attributatem_with_versions.id_of versions . For each source instance and

for each element in that attribute a target instance is created. The target attébutéd is

mapped in the same way for all the target instances whidtewwf version which correspond

to the same underlyindgem_with_versions . The target attributeersion_id is assigned
to the value of the iterator variablersion_iterator
SCHEMA target; SCHEMA source;
ENTITY parent; ENTITY parent;
END_ENTITY; children : INTEGER,;
END_ENTITY;
ENTITY child,;
parent : parent; END_SCHEMA, -- source
END_ENTITY;

END_SCHEMA,; -- target

MAP tp : parent
FROM sp : parent
END_MAP;

MAP c : LIST [0:?] OF child
FROM p : parent
FORi:=1TO p.children
SELECT

parent := parent();
END_MAP;

44

©1SO ISO/NWI 10303-

Alternatively, one single MAP can be specified for this example as shown below.

MAP tp : parent, ¢ : LIST [0:?] OF child
NAMED group_parent_and_child
FROM sp: parent
FORi:=1TO p.children
SELECT

parent ;= parent@group_parent_and_child();
END_MAP;

This statement can only be used within a MAP declaration.

14. Built-in functions and procedures

15. Execution model semantics

The execution model semantics of EXPRESS-X are described according to the main concepts of the
language. The following source schema and corresponding source instance set will be used throughout
this clause.

EXAMPLE 27 — .
SCHEMA EXAMPLE_SCHEMA;

ENTITY item;
id : STRING;
its_version : item_version;
approved_by : STRING;
END_ENTITY;

ENTITY item_version;

id : STRING;

its_ddid : OPTIONAL ddid;
END_ENTITY;

ENTITY ddid,;
id : STRING;
END_ENTITY;

ENTITY person;
name : STRING;
END_ENTITY;

45

ISO/NWI 10303- ©1S0

END_SCHEMA,

#1 = item(’i_1'#3,’smith’);
#2 = item(’i_2’ #4,jones’);
#3 = item_version(iv_1"#5);
#4 = item_version('iv_2’);
#5 = ddid('ddid_1");

#6 = person(’smith’);

#7 = person(’jones’);

#8 = person('miller’);

15.1 Reference of source (and target) schemas

During the execution of the EXPRESS-X specification schema, the underlying source schemas (and the
underlying target schemas in case of the SCHEMA_MAP) together with their type definitions are made
available.

15.2 Inclusion of externally defined functions

The referenced functions which are defined externally to the EXPRESS-X specification have to be
available for execution during runtime.

NOTE — This concept is only available in a SCHEMA_MAP declaration.

15.3 Import of mappings

All definitions and declarations which are specified in the referenced SCHEMA_MAP are available
during the execution of the EXPRESS-X specification. They are handled as if they were specified inside
the referencing EXPRESS-X specification. That is, they shall be considered not as underlying but as
additional definitions and declarations.

NOTE — This concept is only available in a SCHEMA_MAP declaration.

15.4 Type mapping

The attribute assignments are identified which map between source and target attributes of data types
which are mapped in the TYPE_MAP declaration. The corresponding type mapping expression is then
used as the cast operation for that source attribute in the assignment. The same is true for the computa-
tion of the inverse mappings if the mapping implementation supports this conformance class.

46

©1SO ISO/NWI 10303-

EXAMPLE 28 — In Ex. 15 the target typgmark is mapped to the source tygellar by mul-
tiplying dollar with the factorl.5 to derivedmark . Any attribute assignment where a target
attribute of typedmark is mapped to some attributes where at least one of them is ofylpe

lar , the expression of the TYPE_MAP is first applied to the(se) source attribute(s). That is, they
are first multiplied with the factdr.5 .

NOTE — This concept is only available in a SCHEMA_MAP declaration.

15.5 The FROM clause

The FROM clause specifies the scope of the VIEW / MAP declaration. That is, the cartesian product of
all entities which are listed in the FROM clause (including those entities which are directly or indirectly
referenced by them) build the basis for further processing. Thus, the result of processing of the FROM
clause is an input data stream where instances of all specified entities are merged together by the carte-
sian product. The execution model semantics will be detailed using the following example.

EXAMPLE 29 — A view is built over two (root) entities (the entitiem_version is directly
referenced by the root entitygm andddid is indirectly referenced).

VIEW items_and_persons
FROM item, person
END_VIEW;

NOTE — It shall be emphasized that the execution model semantics which are described below are valid
for the execution of a VIEW as well as a MAP declaration. Thus, the VIEW declaration of Ex. 29 can be
replaced by a corresponding MAP declaration and a corresponding target schema.
During runtime, the output stream of the view is built from the following entities:
« all entities which are specified in the FROM clause (iem and product in Ex. 27)

« all entities which are directly referenced by the FROM-clause entitiesi{em, version
which is referenced bigem) and

« all entities which are indirectly referenced by the FROM-clause entitiesddel, which is
referenced bytem_version which is itself referenced htem).

The cartesian product is built over all entities which are explicitly specified in the FROM clause. Con-
sequently, the data of the directly and indirectly referenced entities is implicitly part of the output
stream.

47

ISO/NWI 10303- ©1S0

EXAMPLE 30 — After the processing of the FROM clause, the source data set as specified in
Ex. 27 is represented in the following way in the output stream. (Ox... are used as internal IDs for
the instances)

item Hem_version ddidl persgn
id ts_version appiroved_by iq its_ddiJi id name
0x01 ||#1 |i 1 #3 smith #3 iy 1 #5 #5 || ddid 1 #6 Emith
0x02 |[#1 |i 1 #3 smith # v 1 #5 #5 || ddig_1 #7 jpneg
0x03 ||#1 |i_1 #3 smith #3 iv_1 #5 #5 || ddig_1 #8 miller
0x04 (|#2 |i_2 #4 jones #AH iy_2 #5(| ddig_1 #6 [smith
0x05 ||#2 |i_2 #4 jones #JJ iy_2 #5|| ddig_1 #7 |j|one;
0x06 |[#2 [i 2 44 jones #4 i 2 45| ddid_1 #s r|v|1i|ler

It shall be emphasized that only those combinationgeof anditem_version are part of the
output stream which are connected by relationshipgena.its_version

15.6 The WHERE clause

The WHERE clause specifies predicates all instances of the output stream have to fullfil. That is,
according to those predicates the output stream is filtered.

48

EXAMPLE 31 — The following example extends the VIEW declaration of Ex. 29 by an
WHERE clause to filter specific persons and to join items and persons.

VIEW items_and_persons
FROM i : item, p : person
WHERE (p.name ='smith’ OR p.name ="jones’) AND
i.approved_by = p.name
END_VIEW,
NOTE — It shall be emphasized that the execution model semantics which are described below are valid

for the execution of a VIEW as well as a MAP declaration. Thus, the VIEW declaration of Ex. 31 can be
replaced by a corresponding MAP declaration and a corresponding target schema.

After the evaluation of the WHERE clause predicates, the output stream will be modified as fol-
lows: all grey boxes will be filtered out.

©1SO

ISO/NWI 10303-

item em_version ddigl pers@n
id ts_version appioved_by iq its_ddiJi id name
0x01 ||#1 |i 1 #3 smith #3 1 #5 #5 | ddid 1 #6 BmitH
0x02 |[#1] i 1 #3 smith #3 | iv_1 #5 #5 | ddid_1 ||#7 | jones
0x03 ||#1 | i1 #3 smith #3 | iv_1 #5 #5 | ddid_1 ||#8 | miller
0x04 ||#2 |i_2 #4 jones #4 iy 2 #5|| ddid_1 #6 [$mith
0x05 ||[#2 | i 2 #4 jones #4 | iv_2 #5 | ddid_1 ||#7 | jones
0x06 ||[#2 | i 2 #4 jones #4 | v 2 #5 | ddid_1 ||#8 | miller

15.7 The IDENTIFIED_BY clause

The IDENTIFIED_BY clause has effects during the execution of the mapping specification.

— Assignment of internal IDs to the instances of the output stream.

— Unigueness according to the IDENTIFIED_BY expression has to be ensured.

EXAMPLE 32 — For the explanation of the execution model semantics of the IDENTIFIED_BY
clause another source schema, source instance set and view declaration is used.

ENTITY person,;
first_ name : STRING;
last_ name : STRING;
END_ENTITY;

#1 = person(’'marc’,’jones’);

#2 = person(’paul’,’jones");
#3 = person(’paul’,’smith");

VIEW view_persons
FROM p : person
IDENTIFIED_BY p.last_name;
SELECT
name : STRING := p.last_name;

END_VIEW,

The result of evaluating the IDENTIFIED_BY clause are the following view instances (grey boxes
will be filtered, black boxes are added).

49

ISO/NWI 10303-

©1SO

view terms

Islzw_person

V

source terms pefrson
first_name lagt_name
0x01 marc jones
0x02 paul jones
0x03 paul smith
NOTE — It shall be emphasized that the execution model semantics which are described below are valid

for the execution of a VIEW as well as a MAP declaration. Thus, the VIEW declaration of Ex. 32 can be

name

replaced by a corresponding MAP declaration and a corresponding target schema.

15.8 The SELECT clause

The SELECT clause and the subsumed attribute assignments project attributes and/or entities out of the
output stream.

EXAMPLE 33 — In this example, the execution model semantics are explained when only one
entity is specified in the SELECT clause.

VIEW items_and_persons
FROM i : item, p : person
SELECT i;

END_VIEW,;

After the evaluation of the SELECT clause, the output stream will be modified as follows: all grey
boxes will be filtered out.

item item_version ddid person

id ts_version appr|oved_by id its_ddid id name
0x01 ||#1 |i_1 #3 smith #3| iv_1 #5 #5 | ddid_1 ||#6 | smith
0x02 |[#1 |i 1 #3 smith #3| iv.1 #5 #5 | ddid_1 |[|#7 | jones
0x03 ||#1 |i_1 #3 smith #3 | iv_1 #5 #5 | ddid_1 ||#8 | miller
0x04 ||#2 |i_2 #4 jones #4 | iv_2 #5 | ddid_1 ||#6 | smith
0x05 ||#2 |i_ 2 #4 jones #4 | iv_2 #5 | ddid_1 (|#7 | jones
0x06 ||#2 |i_2 #4 jones #4 | iv_2 #5 | ddid_1 (| #8 | miller

Alternatively, if some attribute assignments are specified also attributes and/or entities are pro-
jected. In the following example, no additional expressions are specified in the attribute assign-

50

©1SO ISO/NWI 10303-

mens in order to separate the different execution model semantics.

VIEW items_and_persons
FROM i : item, p : person
SELECT

END_VIEW,

NOTE — It shall be emphasized that the execution model semantics which are described below are valid
for the execution of a VIEW as well as a MAP declaration. Thus, the VIEW declaration of Ex. 33 and Ex. 33
can be replaced by a corresponding MAP declaration and a corresponding target schema.

15.9 Partitions

???

15.10 Network mapping

???

15.11 The FOR statement

The FOR statements specifies a loop so that for each instance of the output stream this loop is executed
as many times as specified by the loop control statement (cf., Sect. 13.1).

EXAMPLE 34 — We assume that for each source instance of item exactly three corresponding
target instances have to be generated. That is specified in the following mapping specification.

ENTITY item_with_duplicates;
id : STRING;
index : INTEGER,;
END_ENTITY;

MAP iwd : LIST [3:3] OF item_with_duplicates
FROM i : item
SELECT
FORvar:=1TO 3
id :=i.id;
index := var;
END_FOR;
END_MAP;

51

ISO/NWI 10303- © IS0
item_with_duplicates
id
item item_version ddid
id its_version approved_by id i(;s_ddi id
0x01 |1 |i 1 #3 smith #3| iv_1 #5 #5 | ddid_1
0x02 |#1 |i_1 #3 smith #3| iv_1 #5 #5 [ddid_1
0x03 [#1 |i_1 #3 smith #3| iv_1 #5 #5 | ddid_1
0x04 |#2 |i_2 #4 jones #4| iv_2 #5 [ddid_1
0x05 |#2 |i_2 #4 jones #4| iv_2 #5 [ddid_1
0x06 |#2 |i_2 #4 jones #4| iv_2 #5 | ddid_1

NOTE — This concept is only available in a SCHEMA_MAP declaration.

15.12 Explicit binding

272

52

©1SO ISO/NWI 10303-

Annex A
(normative)
EXPRESS-X language syntax

This annex defines the lexical elements of the language and the grammar rules that these elements shall
obey.

NOTE — This syntax definition will result in ambiguous parsers if used directly. It has been written so as

to convey information regarding the use of identifiers. The interpreted identifiers define tokens that are refer-
ences to declared identifiers, and therefore should not resolve to simple_id. This requires a parser developer
to enable identifier reference resolution and return the required reference token to a grammar rule checker.

All of the grammar rules of EXPRESS specified in annex A of ISO 10303-11:1994 are also grammar
rules of EXPRESS-X. In addition, the grammar rules specified in the remainder of this annex are gram-
mar rules of EXPRESS-X.

A.1 Tokens

The following rules specify the tokens used in EXPRESS-X. Except where explicitly stated in the syn-
tax rules, no white space or remarks shall appear within the text matched by a single syntax rule in the
following clauses.

A.1.1 Keywords

This subclause gives the rules used to represent the keywords of EXPRESS-X.

NOTE — This subclause follows the typographical convention that each keyword is represented by a syn-
tax rule whose left hand side is that keyword in uppercase.

NOTE — All the keywords of EXPRESS are also keywords of EXPRESS-X
CREATE = 'create'.

EACH ='each'.

END_CREATE ="'end_create'.
END_EXTERNAL ='end_external'.
END_FOR ="'end_for'".
END_INLINE_FUNCTION ="end_inline_function'.
END_MAP ='end_map'".
END_SCHEMA_MAP ="'end_schema_map'".
END_SCHEMA VIEW ='end_schema_view'.
END_TYPE_MAP ="'end_type_map'.
END_VIEW ='end_view'.

EXTERNAL = 'external'.

IDENTIFIED_BY ='identified_by".
IMPORT_MAPPING = 'import_mapping'.

© 00 ~NO O~ WN P

o ol el =
A WDNRFRO

53

ISO/NWI 10303-

15
16
17
18
19
20
21
22
23
24
25

A.l

26
27

28

Al

29
30
31
32
33
34
35
36
37

A.2

38

39

40

41

54

INLINE_FUNCTION = 'inline_function'.
INSTANCE_OF ="instance_of'.
MAP ="'map'.

NAMED = 'named".

PARTITION = "partition’.
SCHEMA_MAP ='schema_map'.
SCHEMA_VIEW ='schema_view'.
SOURCE = 'source'.

TARGET = 'target'.

TYPE_MAP ="type_map'.

VIEW = 'view'".

.2 Character classes

digit='0"]"1"|'2"|'3"|'4"|'5"'|'6"'|'7"|'8"|'9".

letter ="a'|'b"|'c"|'d"|'e"|'f|'g" | ' |"']]
R A A R R R
v WXy]2

simple_id = letter { letter | digit |'_'}.

.3 Interpreted identifiers

NOTE — Allinterpreted identifiers of EXPRESS are also interpreted in EXPRESS-X
instance_ref = instance_id .

network_ref = network_id .
partition_ref = partition_id .
schema_map_ref = schema_map_id .
schema_view_ref = schema_view id .
source_schema_ref = schema_ref .
target_schema_ref = schema_ref .
view_attribute_ref = view_attribute_id .
view_ref = view_id .

Grammar rules

attribute_reference = attribute_ref
| primary_extended attribute_qualifier .

boolean_expression = expression .

case_expr = CASE selector OF { case_expr_action }
[OTHERWISE "' expression] END_CASE ;.

case_expr_action = case_label {',' case_label } "' expression .

©1S0

©1SO ISO/NWI 10303-

42 complex_entity spec = entity_reference AND entity reference { AND
entity_reference }.

43 create_map_decl = CREATE instance_id INSTANCE_OF
target_entity _reference ';' map_attr_decl_stmt_list END_CREATE ;' .

44 create_view_decl = CREATE instance_id INSTANCE_OF VIEW view_reference
"' view_attr_decl_stmt_list END_CREATE ;' .

45 entity_instantiation_loop = FOR instantiation_loop_control ’; .
46 entity_qualifier ="." entity_ref .

47 entity_reference = entity_ref | primary_extended entity qualifier .
48 extent_reference = source_entity reference | view_reference .

49 external_functions_spec = EXTERNAL function_head { function_head }
END_EXTERNAL ;.

50 for_expr = foreach_expr | forloop_expr .

51 foreach_expr = FOR EACH variable_id IN foreach_in_clause_arg
{ AND variable_id IN foreach_in_clause_arg }
[from_clause] [where_clause]
RETURN map_attr_assgnmt_expr ;' .

52 foreach_in_clause_arg = attribute_reference | view_attribute_reference
| extent_reference .

53 foreign_ref = schema_ref | schema_view_ref | schema_map_ref .
54 forloop_expr = FOR repeat_control RETURN map_attr_assgnmt_expr ;' .

55 from_clause = FROM ('(' from_parameter_list)’
| from_parameter_list) .

56 from_paramete r = [parameter_id { parameter_id } "'] extent_reference

57 from_parameter_list = from_parameter {',' from_parameter } .
58 identified_by clause = IDENTIFIED_BY expression { '’ expression } ';"
59 inline_funct_head = INLINE_FUNCTION ['(' formal_parameter { ;'
formal_parameter })"] ' parameter_type ;' .
60 inline_function_decl = inline_funct_head [algorithm_head]
stmt { stmt } END_INLINE_FUNCTION ;".
61 inline_view_decl = VIEW from_clause [where_clause]
[view_project_clause]| END_VIEW ;" .
62 instance_id = simple_id .
63 instance_qualifier ="." instance_ref .

64 instantiation_foreach_control = EACH variable_id
IN source_attribute_reference
[WITH_INDEX variable_id]
{ AND variable_id
IN source_attribute_reference
[WITH_INDEX variable_id]} .

65 instantiation_loop_control = instantiation_foreach_control
| repeat_control .
66 map_attr_assgnmt_expr = expression | map_cond_attr_expr |
map_case_expr | for_expr | inline_function_decl | map_call .
67 map_attr_decl_stmt_list = map_attribute_declaration
{ map_attribute_declaration } .

55

ISO/NWI 10303-

68
69

70

71

72

73

74

75

76
77

78
79
80

81
82

83
84

85

86

87

88
89
90

91

56

map_attribute_decl_block = map_attr_decl_stmt_list .
map_attribute_declaration = [entity_reference '.'] attribute_ref
""='map_attr_assgnmt_expr ;' .
map_call = entity_reference ['@' network_or_partition_qualification]
‘(" expression { ', expression })" .
map_case_expr = CASE selector OF { map_case_expr_action }
[OTHERWISE "' map_attr_assgnmt_expr] END_CASE';.
map_case_expr_action = case_label {',' case_label } "'
map_attr_assgnmt_expr .
map_cond_attr_expr = IF boolean_expression THEN map_attr_assgnmt_expr
[ELSE map_attr_assgnmt_expr] END_IF ;" .
map_decl = MAP map_decl_header
((map_decl_body { map_partitions }) | map_decl_body)
END_MAP ';'.
map_decl_body = ((from_clause [identified_by clause]) |
subtype_of clause)
[where_clause]
{ entity_instantiation_loop }
[map_project_clause] .
map_decl_header = target_entity ref list [NAMED network_id] .
map_interface_spec = IMPORT_MAPPING schema_map_or_view_ref or_rename
{') schema_map_or_view_ref or _rename}’;.
map_partition = PARTITION [partition_id '] map_decl_body .
map_partitions = map_partition { map_partition } .
map_project_clause = SELECT (extent_reference
| map_attribute_decl_block).
network_id = simple_id .
network_or_partition_qualification = network_ref
| [network_ref '."] partition_ref .
partition_id = simple_id .
primary_extended = qualifiable_factor_extended { qualifier_extended }

gualifiable_factor_extended = qualifiable_factor | schema_map_ref |
schema_view_ref | view_ref | map_call | view_call |
view_attribute_ref | instance_ref .
qualifier_extended = qualifier | view_qualifier |
instance_qualifier | entity_qualifier | view_attribute_qualifier .
reference_clause = REFERENCE FROM foreign_ref
['(resource_or_rename

{', resource_or_rename })']";'".
schema_alias_id = schema_id .
schema_map_alias_id = schema_map_id .
schema_map_body_element = function_decl | procedure_decl | view_decl

| create_view_decl | map_decl

| create_map_decl .
schema_map_body element_list = schema_map_body element

{ schema_map_body element}.

©1S0

©1SO

92

93
94

95

96
97
98

99

100

101

102

103

104
105

106
107

108
109
110

111

112

113

114
115
116

ISO/NWI 10303-

schema_map_decl = SCHEMA_ MAP schema_map_id
target_interface_spec source_interface_spec
{ map_interface_spec } { external_functions_spec }
{ type_mapping_stmt } [constant_decl]
schema_map_body element_list END_SCHEMA_MAP ';'.

schema_map_id = simple_id .
schema_map_or_view_ref or_rename = schema_map_ref_or_rename
| schema_view_ref_or_rename .
schema_map_ref or_rename = [schema_map_alias_id ":']
schema_map _ref.
schema_ref_or_rename =[schema_alias_id "'] schema_ref .
schema_view_alias_id = schema_view_id .
schema_view_body_element = function_decl | procedure_decl | view_decl
| create_view_decl .

schema_view_body_element_list = schema_view_body element {
schema_view_body_element} .

schema_view_decl = SCHEMA_VIEW schema_view_id { reference_clause }
[constant_decl]
schema_view_body_element_list END_SCHEMA VIEW ;' .
schema_view_id = simple_id .
schema_view_ref _or_rename =[schema_view_alias_id ']
schema_view_ref .

source_attribute_reference = attribute_reference |

view_attribute_reference .

source_entity_reference = entity_reference .

source_interface_spec = SOURCE schema_ref_or_rename
{') schema_ref or_rename}"; .

source_type_reference = type_reference .

subtype_of clause = SUBTYPE OF view_or_entity reference
[PARTITION partition_ref]";".

syntax = schema_map_decl | schema_view_decl .
target_entity alias_id = entity_id .
target_entity ref list = target_entity ref list el
{', target_entity_ref list el }.
target_entity ref list_el = [target_entity alias_id
"' [LIST bound_spec OF]]
target_entity_reference .

target_entity reference = entity_reference | complex_entity spec |

target_schema_ref "' '(' complex_entity spec ')’ .
target_interface_spec = TARGET schema_ref _or_rename

{') schema_ref or_rename}"; .
target_type_reference = type_reference .
type_assgnmt_expr = expression | case_expr .
type_map_stmt_body = [schema_ref'.'] base_type "=
type_assgnmt_expr ';'.

57

ISO/NWI 10303- ©1S0

117

118
119

120
121

122
123
124

125

126
127

128

129

130

131

132
133
134
135
136

137
138

A.3

139
140
141
142
143

58

type_mapping_stmt = TYPE_MAP target_type_reference
{target_type_reference }
FROM source_type_reference { source_type reference }';'
{type_map_stmt_body } END_TYPE_MAP ;.
type_reference = [schema_ref "'] type_ref.
view_attr_assgnmt_expr = expression | view_cond_attr_expr |
view_case_expr | inline_view_decl | view_call .
view_attr_decl_stmt_list = view_attribute_decl
{ view_attribute_decl } .

view_attribute_decl = view_attribute_id "' [source_schema_ref "]

base_type "=' view_attr_assgnmt_expr ;.
view_attribute_id = simple_id .
view_attribute_qualifier ="." view_attribute_ref .

view_attribute_reference = view_attribute_ref
| primary_extended view_attribute_qualifier .
view_call = view_reference

‘(" view_call_argument { ', view_call_argument } ') .
view_call_argument = expression | view_call .
view_case_expr = CASE selector OF { view_case_expr_action }
[OTHERWISE "' view_attr_assgnmt_expr] END_CASE';'.
view_case_expr_action = case_label {',' case_label } "'
view_attr_assgnmt_expr .
view_cond_attr_expr = IF boolean_expression

THEN view_attr_assgnmt_expr
[ELSE view_attr_assgnmt_expr] END_IF ;" .

view_decl = VIEW view_id ';' [subtype_of clause]

(view_partitions | view_decl_body)

END_VIEW ;" .
view_decl_body = [from_clause] [identified_by_clause]

[where_clause] [view_project_clause] .
view_id = simple_id .
view_or_entity reference = view_reference | entity_reference .
view_partition = PARTITION [partition_id "'] view_decl_body .
view_partitions = view_partition { view_partition } .
view_project_clause = SELECT (extent_reference
| view_attr_decl_stmt_list) .

view_qualifier ="." view_ref .
view_reference = view_ref | primary_extended '.’ view_qualifier .

EXPRESS Syntax

add_like op ='+|'-'| OR | XOR..

bound_1 = numeric_expression .

bound_2 = numeric_expression .

bound_spec ="[' bound_1 ":'bound_217".
built_in_constant = CONST_E | PI | SELF | '?".

©1SO ISO/NWI 10303-

144

145
146
147
148
149
150
151

152

A4

built_in_function = ABS | ACOS | ASIN | ATAN | BLENGTH | COS | EXISTS
| EXP | FORMAT | HIBOUND | HIINDEX | LENGTH | LOBOUND
| LOINDEX | LOG | LOG2 | LOG10 | NVL | ODD | ROLESOF
| SIN | SIZEOF | SQRT | TAN | TYPEOF | USEDIN | VALUE
| VALUE_IN | VALUE_UNIQUE .

constant_factor = built_in_constant | constant_ref .
enumeration_reference = [type_ref'.'] enumeration_ref .
expression = simple_expression [rel_op_extended simple_expression | .
factor = simple_factor ["**' simple_factor] .
logical_expression = expression .
numeric_expression = simple_expression .
repeat_control = [increment_control] [while_control]
[until_control] .

simple_factor = aggregate_initializer | entity_constructor
| enumeration_reference | interval | query_expression
| ([unary_op] ('(expression')' | primary)) .

Cross reference listing

59

ISO/NWI 10303- ©1S0

Annex B
(informative)

Bibliography

EXPRESS-V language (ISO TC184/SC4/WG5 N251).
EXPRESS-M language (ISO TC184/SC4/WG5 N243).

BRITTY language.

Wirth, Niklaus, "What can we do about the unnecessary diversity of notations for syntactic defini-
tions?,” Communications of the ACM, November 1977, v. 20, no. 11, p. 822.

60

	Contents
	1. Scope 1
	2. Normative references 2
	3. Definitions 2
	3.1 Terms defined in ISO 10303�1 2
	3.2 Terms defined in ISO 10303�11 2
	3.3 Other definitions 3

	4. Conformance requirements 4
	4.1 Formal specifications written in EXPRESS�X 4
	4.1.1 Lexical language 4

	4.2 Implementations of EXPRESS�X 5
	4.2.1 EXPRESS�X language parser 5
	4.2.2 EXPRESS�X mapping engine 5

	4.3 Conformance classes 7

	5. Fundamental principles 7
	6. Language specification syntax 9
	7. Basic language elements 11
	7.1 Reserved words 11
	7.1.1 Keywords 11

	8. Data types 12
	8.1 Complex entity data type 12
	8.2 View data type 13
	8.3 Extent data type 13

	9. Declarations 14
	9.1 Schema_view declaration 14
	9.2 Schema_map declaration 15
	9.3 Common clauses of the VIEW and MAP declarations 17
	9.3.1 The FROM clause 17
	9.3.2 The WHERE clause 17
	9.3.3 Identification of view and target instances 18

	9.4 View declaration 20
	9.4.1 View attributes 21
	9.4.2 View partitions 22
	9.4.3 Specifying subtype views 23

	9.5 Map declaration 23
	9.5.1 Header of the MAP declaration 24
	9.5.2 The SELECT clause 25
	9.5.3 Partitions within a MAP declaration 25
	9.5.4 Inheritance 26

	9.6 Create declaration 27
	9.7 Constant declaration 27
	9.8 Function declaration 27
	9.9 Procedure declaration 27
	9.10 Rule declaration 27
	9.11 Type map declaration 27

	10. Scope and visibility 28
	10.1 Scope rules 29
	10.2 Visibility rules 29
	10.3 Explicit item rules 29
	10.3.1 Schema_view 29
	10.3.2 View 30
	10.3.3 View partition label 30
	10.3.4 View expression 30

	11. Interface specification 30
	11.1 Reference interface specification 31
	11.2 Implicit interfaces 32
	11.3 SCHEMA_MAP interfaces 32
	11.3.1 Source schema interface 32
	11.3.2 Target schema interface 32
	11.3.3 Map interface 33
	11.3.4 External functions 33

	12. Expressions 33
	12.1 Explicit binding 33
	12.2 Partial explicit binding 36
	12.3 Inline views 37
	12.4 Operations on extents 37
	12.5 View expression evaluation 37
	12.6 FOR expression 37
	12.7 Conditional expression 41
	12.8 CASE expression 41

	13. Executable statements 42
	13.1 FOR clause 42

	14. Built-in functions and procedures 45
	15. Execution model semantics 45
	15.1 Reference of source (and target) schemas 46
	15.2 Inclusion of externally defined functions 46
	15.3 Import of mappings 46
	15.4 Type mapping 46
	15.5 The FROM clause 47
	15.6 The WHERE clause 48
	15.7 The IDENTIFIED_BY clause 49
	15.8 The SELECT clause 50
	15.9 Partitions 51
	15.10 Network mapping 51
	15.11 The FOR statement 51
	15.12 Explicit binding 52

	Foreword
	Introduction
	Industrial automation systems and integration — Product data representation and exchange — Part 1...
	1. Scope
	2. Normative references
	3. Definitions
	3.1 Terms defined in ISO 10303�1
	3.2 Terms defined in ISO 10303�11
	3.3 Other definitions
	3.3.1 binding: an ordered tuple of values taken from source data entity extents or view extents a...
	3.3.2 binding extent: the set of bindings corresponding to source data entity extents and view ex...
	3.3.3 evaluation (of a view or map): the application of a binding to a view or map. Evaluation of...
	3.3.4 inverse evaluation (of a view / map): the updating of source data values through the update...
	3.3.5 map: a declaration that defines a relationship between data of one (or more) source entity ...
	3.3.6 view: an alternative organization of the information in an EXPRESS model.
	3.3.7 view extent: an aggregation data type having as its domain a collection of values of a give...
	3.3.8 view data type: a representation of a view. A view data type establishes a domain of values...
	3.3.9 view instance: a named unit of data which represents an alternative organization of source ...

	4. Conformance requirements
	4.1 Formal specifications written in EXPRESS�X
	4.1.1 Lexical language

	4.2 Implementations of EXPRESS�X
	4.2.1 EXPRESS�X language parser
	4.2.2 EXPRESS�X mapping engine
	4.2.2.1 Support of VIEW declarations
	4.2.2.2 Support of MAP declarations
	4.2.2.3 Support of the propagation of updates
	4.2.2.4 Push mapping
	4.2.2.5 Pull mapping
	4.2.2.6 Support of constraint checking

	4.3 Conformance classes

	5. Fundamental principles
	EXAMPLE 1 — The extents of part and part_usage_approval below are the sets of entity instances (#...

	6. Language specification syntax
	7. Basic language elements
	7.1 Reserved words
	7.1.1 Keywords
	Table 1 — Additional EXPRESS�X keywords

	8. Data types
	8.1 Complex entity data type
	Rules and restrictions:
	a) Each entity_ref shall be a reference to an entity which is visible in the current scope.
	b) The referenced complex entity data type shall describe a valid domain within some schema (see ...
	c) A given entity_ref shall occur at most once within a complex_entity_ref.

	EXAMPLE 2 — Given the following entity declarations:

	8.2 View data type
	8.3 Extent data type
	Rules and restrictions:
	a) extent_reference shall be a reference to an extent which is visible in the current scope.

	EXAMPLE 3 — The following declaration defines a view data type and extent data type, each designa...

	9. Declarations
	9.1 Schema_view declaration
	EXAMPLE 4 — ap203_arm names a schema_view that may contain declarations defining a view over the ...

	9.2 Schema_map declaration
	EXAMPLE 5 — iges2step names a schema_map that may contain declarations for translating geometry d...
	EXAMPLE 6 — This example illustrates the use of required EXPRESS-X declarations. t1, t2, t3, s1 a...

	9.3 Common clauses of the VIEW and MAP declarations
	9.3.1 The FROM clause
	Rules and restrictions:
	a) parameter_ids shall be unique within the scope of the MAP or VIEW declaration.

	9.3.2 The WHERE clause
	9.3.3 Identification of view and target instances
	Rules and restrictions:
	a) expression shall not evaluate to a value of type AGGREGATE.

	EXAMPLE 7 — In the following, the source data set may contain multiple value equivalent instances...
	EXAMPLE 8 — Assuming that one instance of the target entity department corresponds to a set of in...

	9.4 View declaration
	EXAMPLE 9 — The following view collects the information about persons serving in roles within org...
	Rules and restrictions:
	a) If in a view_decl a subtype_of_clause is specified, no from_clause shall be declared in the vi...
	b) If no subtype_of_clause is specified, the from_clause in any view_decl_body of this view_decl ...
	c) Each attribute expression reference declared in the view declaration shall be unique within th...

	9.4.1 View attributes
	Rules and restrictions:
	a) The expression (expression, view_cond_attr_expr, view_case_expr, inline_view_decl, view_call) ...
	b) Every view attribute of a view instance shall have a value.

	EXAMPLE 10 — circle names a view extent defined to contain all ellipse instances with equal lengt...

	9.4.2 View partitions
	EXAMPLE 11 — In ISO 10303-201, the application object organization may be mapped to either a pers...
	Rules and restrictions:
	a) All partitions of a VIEW declaration shall define the same attributes (including names and types)
	b) The attributes of a VIEW declaration shall appear in the same order in each of its partitions..

	9.4.3 Specifying subtype views
	EXAMPLE 12 — The following view illustrates subtyping. The view male defines an additional member...

	9.5 Map declaration
	9.5.1 Header of the MAP declaration
	Rules and restrictions:
	a) For each entity type appearing in the target_entity_ref_list none of its supertypes shall appe...

	EXAMPLE 13 — In the example below, a pump in the source data model is mapped to a set of target e...

	9.5.2 The SELECT clause
	9.5.3 Partitions within a MAP declaration
	Rules and restrictions:
	a) If the MAP declaration contains more than one partition, the partitions shall be named.
	b) All partitions must define the same attributes (attribute_ref) and types.

	9.5.4 Inheritance
	EXAMPLE 14 — Inheritance for MAP declaration.

	9.6 Create declaration
	9.7 Constant declaration
	9.8 Function declaration
	9.9 Procedure declaration
	9.10 Rule declaration
	9.11 Type map declaration
	EXAMPLE 15 — The following specifies the mapping between the types dollar and dmark.
	Rules and restrictions:
	a) Body is not needed if just renaming.
	b) No more than two expressions; if second is omitted then reverse mapping is implicit.
	c) The two expressions shall be inverses of each other.
	d) No entity instances shall be mapped by the TYPE_MAP. The base type shall not be an entity type.

	10. Scope and visibility
	Table 2 — Scope and identifier defining items
	10.1 Scope rules
	10.2 Visibility rules
	10.3 Explicit item rules
	10.3.1 Schema_view
	10.3.2 View
	10.3.3 View partition label
	10.3.4 View expression

	11. Interface specification
	11.1 Reference interface specification
	Rules and restrictions:

	11.2 Implicit interfaces
	11.3 SCHEMA_MAP interfaces
	11.3.1 Source schema interface
	11.3.2 Target schema interface
	11.3.3 Map interface
	11.3.4 External functions
	EXAMPLE 16 — A mapping may call an external function to convert geometry from advanced BREP into ...

	12. Expressions
	12.1 Explicit binding
	EXAMPLE 17 — Explicit binding concept.
	EXAMPLE 18 — Explicit bindings are useful for describing a relationship between two views: :

	12.2 Partial explicit binding
	EXAMPLE 19 — In the following, the various versions associated with a part are collected by using...

	12.3 Inline views
	EXAMPLE 20 — In the following example the versions of a part are collected by using an inline view.

	12.4 Operations on extents
	12.5 View expression evaluation
	12.6 FOR expression
	EXAMPLE 21 — FOR expression.
	EXAMPLE 22 — Nested FOR expression. The example 21 is extended as follows.
	EXAMPLE 23 — Parallel iteration with the FOR expression.
	Rules and restrictions:
	a) The target attribute of the attribute assignment statement where the FOR expression is used in...

	12.7 Conditional expression
	12.8 CASE expression
	EXAMPLE 24 — CASE expression.

	13. Executable statements
	13.1 FOR clause
	Rules and restrictions:
	a) variable_id after the keyword EACH is of the same type as the elements of source_attribute_ref...
	b) variable_id after the keyword INDEXING is of type NUMBER with values greater than one.

	EXAMPLE 25 — In the following example, all item versions of one item are grouped together in the ...
	EXAMPLE 26 — In the following example, all item versions of one item are grouped together in the ...

	14. Built-in functions and procedures
	15. Execution model semantics
	EXAMPLE 27 — .
	15.1 Reference of source (and target) schemas
	15.2 Inclusion of externally defined functions
	15.3 Import of mappings
	15.4 Type mapping
	EXAMPLE 28 — In Ex. 15 the target type dmark is mapped to the source type dollar by multiplying d...

	15.5 The FROM clause
	EXAMPLE 29 — A view is built over two (root) entities (the entity item_version is directly refere...
	EXAMPLE 30 — After the processing of the FROM clause, the source data set as specified in Ex. 27 ...

	item
	item_version
	ddid
	person
	id
	its_version
	approved_by
	id
	its_ddid
	id
	name
	0x01
	#1
	i_1
	#3
	smith
	#3
	iv_1
	#5
	#5
	ddid_1
	#6
	smith
	0x02
	#1
	i_1
	#3
	smith
	#3
	iv_1
	#5
	#5
	ddid_1
	#7
	jones
	0x03
	#1
	i_1
	#3
	smith
	#3
	iv_1
	#5
	#5
	ddid_1
	#8
	miller
	0x04
	#2
	i_2
	#4
	jones
	#4
	iv_2
	#5
	ddid_1
	#6
	smith
	0x05
	#2
	i_2
	#4
	jones
	#4
	iv_2
	#5
	ddid_1
	#7
	jones
	0x06
	#2
	i_2
	#4
	jones
	#4
	iv_2
	#5
	ddid_1
	#8
	miller
	15.6 The WHERE clause
	EXAMPLE 31 — The following example extends the VIEW declaration of Ex. 29 by an WHERE clause to f...

	item
	item_version
	ddid
	person
	id
	its_version
	approved_by
	id
	its_ddid
	id
	name
	0x01
	#1
	i_1
	#3
	smith
	#3
	iv_1
	#5
	#5
	ddid_1
	#6
	smith
	0x02
	#1
	i_1
	#3
	smith
	#3
	iv_1
	#5
	#5
	ddid_1
	#7
	jones
	0x03
	#1
	i_1
	#3
	smith
	#3
	iv_1
	#5
	#5
	ddid_1
	#8
	miller
	0x04
	#2
	i_2
	#4
	jones
	#4
	iv_2
	#5
	ddid_1
	#6
	smith
	0x05
	#2
	i_2
	#4
	jones
	#4
	iv_2
	#5
	ddid_1
	#7
	jones
	0x06
	#2
	i_2
	#4
	jones
	#4
	iv_2
	#5
	ddid_1
	#8
	miller
	15.7 The IDENTIFIED_BY clause
	EXAMPLE 32 — For the explanation of the execution model semantics of the IDENTIFIED_BY clause ano...

	view terms
	view_person
	internal ID
	corresponding source IDs
	name
	source terms
	person
	first_name
	last_name
	0x01
	#1
	jones
	{#1,#2}
	marc
	jones
	0x02
	#2
	paul
	jones
	0x03
	#3
	smith
	#3
	paul
	smith
	15.8 The SELECT clause
	EXAMPLE 33 — In this example, the execution model semantics are explained when only one entity is...

	item
	item_version
	ddid
	person
	id
	its_version
	approved_by
	id
	its_ddid
	id
	name
	0x01
	#1
	i_1
	#3
	smith
	#3
	iv_1
	#5
	#5
	ddid_1
	#6
	smith
	0x02
	#1
	i_1
	#3
	smith
	#3
	iv_1
	#5
	#5
	ddid_1
	#7
	jones
	0x03
	#1
	i_1
	#3
	smith
	#3
	iv_1
	#5
	#5
	ddid_1
	#8
	miller
	0x04
	#2
	i_2
	#4
	jones
	#4
	iv_2
	#5
	ddid_1
	#6
	smith
	0x05
	#2
	i_2
	#4
	jones
	#4
	iv_2
	#5
	ddid_1
	#7
	jones
	0x06
	#2
	i_2
	#4
	jones
	#4
	iv_2
	#5
	ddid_1
	#8
	miller
	15.9 Partitions
	15.10 Network mapping
	15.11 The FOR statement
	EXAMPLE 34 — We assume that for each source instance of item exactly three corresponding target i...

	item_with_duplicates
	id
	index
	item
	item_version
	ddid
	id
	its_version
	approved_by
	id
	its_ddi d
	id
	0x01
	#1
	i_1
	#3
	smith
	1
	#3
	iv_1
	#5
	#5
	ddid_1
	0x02
	#1
	i_1
	#3
	smith
	2
	#3
	iv_1
	#5
	#5
	ddid_1
	0x03
	#1
	i_1
	#3
	smith
	3
	#3
	iv_1
	#5
	#5
	ddid_1
	0x04
	#2
	i_2
	#4
	jones
	1
	#4
	iv_2
	#5
	ddid_1
	0x05
	#2
	i_2
	#4
	jones
	2
	#4
	iv_2
	#5
	ddid_1
	0x06
	#2
	i_2
	#4
	jones
	3
	#4
	iv_2
	#5
	ddid_1
	15.12 Explicit binding

	Annex A (normative) EXPRESS�X language syntax
	A.1 Tokens
	A.1.1 Keywords
	1 CREATE = 'create'.
	2 EACH = 'each'.
	3 END_CREATE = 'end_create'.
	4 END_EXTERNAL = 'end_external'.
	5 END_FOR = 'end_for'.
	6 END_INLINE_FUNCTION = 'end_inline_function'.
	7 END_MAP = 'end_map'.
	8 END_SCHEMA_MAP = 'end_schema_map'.
	9 END_SCHEMA_VIEW = 'end_schema_view'.
	10 END_TYPE_MAP = 'end_type_map'.
	11 END_VIEW = 'end_view'.
	12 EXTERNAL = 'external'.
	13 IDENTIFIED_BY = 'identified_by'.
	14 IMPORT_MAPPING = 'import_mapping'.
	15 INLINE_FUNCTION = 'inline_function'.
	16 INSTANCE_OF = 'instance_of'.
	17 MAP = 'map'.
	18 NAMED = 'named'.
	19 PARTITION = 'partition'.
	20 SCHEMA_MAP = 'schema_map'.
	21 SCHEMA_VIEW = ’schema_view’.
	22 SOURCE = 'source'.
	23 TARGET = 'target'.
	24 TYPE_MAP = 'type_map'.
	25 VIEW = 'view'.

	A.1.2 Character classes
	26 digit = '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' .
	27 letter = 'a' | 'b' | 'c' | 'd' | 'e' | 'f' | 'g' | 'h' | 'i' | 'j' | 'k' | 'l' | 'm' | 'n' | '...
	28 simple_id = letter { letter | digit | '_' } .

	A.1.3 Interpreted identifiers
	29 instance_ref = instance_id .
	30 network_ref = network_id .
	31 partition_ref = partition_id .
	32 schema_map_ref = schema_map_id .
	33 schema_view_ref = schema_view_id .
	34 source_schema_ref = schema_ref .
	35 target_schema_ref = schema_ref .
	36 view_attribute_ref = view_attribute_id .
	37 view_ref = view_id .

	A.2 Grammar rules
	38 attribute_reference = attribute_ref | primary_extended attribute_qualifier .
	39 boolean_expression = expression .
	40 case_expr = CASE selector OF { case_expr_action } [OTHERWISE ':' expression] END_CASE ';' .
	41 case_expr_action = case_label { ',' case_label } ':' expression .
	42 complex_entity_spec = entity_reference AND entity_reference { AND entity_reference }.
	43 create_map_decl = CREATE instance_id INSTANCE_OF target_entity_reference ';' map_attr_decl_stm...
	44 create_view_decl = CREATE instance_id INSTANCE_OF VIEW view_reference ';' view_attr_decl_stmt_...
	45 entity_instantiation_loop = FOR instantiation_loop_control ’;’ .
	46 entity_qualifier = '.' entity_ref .
	47 entity_reference = entity_ref | primary_extended entity_qualifier .
	48 extent_reference = source_entity_reference | view_reference .
	49 external_functions_spec = EXTERNAL function_head { function_head } END_EXTERNAL ';' .
	50 for_expr = foreach_expr | forloop_expr .
	51 foreach_expr = FOR EACH variable_id IN foreach_in_clause_arg { AND variable_id IN foreach_in_c...
	52 foreach_in_clause_arg = attribute_reference | view_attribute_reference | extent_reference .
	53 foreign_ref = schema_ref | schema_view_ref | schema_map_ref .
	54 forloop_expr = FOR repeat_control RETURN map_attr_assgnmt_expr ';' .
	55 from_clause = FROM ('(' from_parameter_list ')' | from_parameter_list) .
	56 from_parameter = [parameter_id { parameter_id } ':'] extent_reference .
	57 from_parameter_list = from_parameter { ',' from_parameter } .
	58 identified_by_clause = IDENTIFIED_BY expression { ',' expression } ';'.
	59 inline_funct_head = INLINE_FUNCTION ['(' formal_parameter { ';' formal_parameter } ')'] ':' ...
	60 inline_function_decl = inline_funct_head [algorithm_head] stmt { stmt } END_INLINE_FUNCTION ...
	61 inline_view_decl = VIEW from_clause [where_clause] [view_project_clause] END_VIEW ';' .
	62 instance_id = simple_id .
	63 instance_qualifier = '.' instance_ref .
	64 instantiation_foreach_control = EACH variable_id IN source_attribute_reference [WITH_INDEX va...
	65 instantiation_loop_control = instantiation_foreach_control | repeat_control .
	66 map_attr_assgnmt_expr = expression | map_cond_attr_expr | map_case_expr | for_expr | inline_fu...
	67 map_attr_decl_stmt_list = map_attribute_declaration { map_attribute_declaration } .
	68 map_attribute_decl_block = map_attr_decl_stmt_list .
	69 map_attribute_declaration = [entity_reference '.'] attribute_ref ':=' map_attr_assgnmt_expr ...
	70 map_call = entity_reference ['@' network_or_partition_qualification] '(' expression { ',' ex...
	71 map_case_expr = CASE selector OF { map_case_expr_action } [OTHERWISE ':' map_attr_assgnmt_exp...
	72 map_case_expr_action = case_label { ',' case_label } ':' map_attr_assgnmt_expr .
	73 map_cond_attr_expr = IF boolean_expression THEN map_attr_assgnmt_expr [ELSE map_attr_assgnmt_...
	74 map_decl = MAP map_decl_header ((map_decl_body { map_partitions }) | map_decl_body) END_MAP ...
	75 map_decl_body = ((from_clause [identified_by_clause]) | subtype_of_clause) [where_claus...
	76 map_decl_header = target_entity_ref_list [NAMED network_id] .
	77 map_interface_spec = IMPORT_MAPPING schema_map_or_view_ref_or_rename { ',' schema_map_or_view_...
	78 map_partition = PARTITION [partition_id ':'] map_decl_body .
	79 map_partitions = map_partition { map_partition } .
	80 map_project_clause = SELECT (extent_reference | map_attribute_decl_block).
	81 network_id = simple_id .
	82 network_or_partition_qualification = network_ref | [network_ref '.'] partition_ref .
	83 partition_id = simple_id .
	84 primary_extended = qualifiable_factor_extended { qualifier_extended } .
	85 qualifiable_factor_extended = qualifiable_factor | schema_map_ref | schema_view_ref | view_ref...
	86 qualifier_extended = qualifier | view_qualifier | instance_qualifier | entity_qualifier | view...
	87 reference_clause = REFERENCE FROM foreign_ref ['(' resource_or_rename { ',' resource_or_renam...
	88 schema_alias_id = schema_id .
	89 schema_map_alias_id = schema_map_id .
	90 schema_map_body_element = function_decl | procedure_decl | view_decl | create_view_decl | map_...
	91 schema_map_body_element_list = schema_map_body_element { schema_map_body_element } .
	92 schema_map_decl = SCHEMA_MAP schema_map_id target_interface_spec source_interface_spec { map_i...
	93 schema_map_id = simple_id .
	94 schema_map_or_view_ref_or_rename = schema_map_ref_or_rename | schema_view_ref_or_rename .
	95 schema_map_ref_or_rename = [schema_map_alias_id ':'] schema_map_ref .
	96 schema_ref_or_rename = [schema_alias_id ':'] schema_ref .
	97 schema_view_alias_id = schema_view_id .
	98 schema_view_body_element = function_decl | procedure_decl | view_decl | create_view_decl .
	99 schema_view_body_element_list = schema_view_body_element { schema_view_body_element } .
	100 schema_view_decl = SCHEMA_VIEW schema_view_id { reference_clause } [constant_decl] schema_v...
	101 schema_view_id = simple_id .
	102 schema_view_ref_or_rename = [schema_view_alias_id ':'] schema_view_ref .
	103 source_attribute_reference = attribute_reference | view_attribute_reference .
	104 source_entity_reference = entity_reference .
	105 source_interface_spec = SOURCE schema_ref_or_rename { ',' schema_ref_or_rename } ';' .
	106 source_type_reference = type_reference .
	107 subtype_of_clause = SUBTYPE OF view_or_entity_reference [PARTITION partition_ref] ';' .
	108 syntax = schema_map_decl | schema_view_decl .
	109 target_entity_alias_id = entity_id .
	110 target_entity_ref_list = target_entity_ref_list_el { ',' target_entity_ref_list_el } .
	111 target_entity_ref_list_el = [target_entity_alias_id ':' [LIST bound_spec OF]] target_enti...
	112 target_entity_reference = entity_reference | complex_entity_spec | target_schema_ref '.' '(' ...
	113 target_interface_spec = TARGET schema_ref_or_rename { ',' schema_ref_or_rename } ';' .
	114 target_type_reference = type_reference .
	115 type_assgnmt_expr = expression | case_expr .
	116 type_map_stmt_body = [schema_ref '.'] base_type ':=' type_assgnmt_expr ';'.
	117 type_mapping_stmt = TYPE_MAP target_type_reference { target_type_reference } FROM source_type...
	118 type_reference = [schema_ref '.'] type_ref .
	119 view_attr_assgnmt_expr = expression | view_cond_attr_expr | view_case_expr | inline_view_decl...
	120 view_attr_decl_stmt_list = view_attribute_decl { view_attribute_decl } .
	121 view_attribute_decl = view_attribute_id ':' [source_schema_ref '.'] base_type ':=' view_att...
	122 view_attribute_id = simple_id .
	123 view_attribute_qualifier = '.' view_attribute_ref .
	124 view_attribute_reference = view_attribute_ref | primary_extended view_attribute_qualifier .
	125 view_call = view_reference '(' view_call_argument { ',' view_call_argument } ')' .
	126 view_call_argument = expression | view_call .
	127 view_case_expr = CASE selector OF { view_case_expr_action } [OTHERWISE ':' view_attr_assgnmt...
	128 view_case_expr_action = case_label { ',' case_label } ':' view_attr_assgnmt_expr .
	129 view_cond_attr_expr = IF boolean_expression THEN view_attr_assgnmt_expr [ELSE view_attr_assg...
	130 view_decl = VIEW view_id ';' [subtype_of_clause] (view_partitions | view_decl_body) END_V...
	131 view_decl_body = [from_clause] [identified_by_clause] [where_clause] [view_project_cla...
	132 view_id = simple_id .
	133 view_or_entity_reference = view_reference | entity_reference .
	134 view_partition = PARTITION [partition_id ':'] view_decl_body .
	135 view_partitions = view_partition { view_partition } .
	136 view_project_clause = SELECT (extent_reference | view_attr_decl_stmt_list) .
	137 view_qualifier = ’.’ view_ref .
	138 view_reference = view_ref | primary_extended ’.’ view_qualifier .

	A.3 EXPRESS Syntax
	139 add_like_op = '+'| '-' | OR | XOR .
	140 bound_1 = numeric_expression .
	141 bound_2 = numeric_expression .
	142 bound_spec = '[' bound_1 ':' bound_2 ']' .
	143 built_in_constant = CONST_E | PI | SELF | '?' .
	144 built_in_function = ABS | ACOS | ASIN | ATAN | BLENGTH | COS | EXISTS | EXP | FORMAT | HIBOUN...
	145 constant_factor = built_in_constant | constant_ref .
	146 enumeration_reference = [type_ref '.'] enumeration_ref .
	147 expression = simple_expression [rel_op_extended simple_expression] .
	148 factor = simple_factor ['**' simple_factor] .
	149 logical_expression = expression .
	150 numeric_expression = simple_expression .
	151 repeat_control = [increment_control] [while_control] [until_control] .
	152 simple_factor = aggregate_initializer | entity_constructor | enumeration_reference | interval...

	A.4 Cross reference listing

	Annex B (informative) Bibliography

